

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2008

3895-8/7895-8/MS/R/08J

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552310E-mail:publications@ocr.org.uk

CONTENTS

www.mymathscloud.com

Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897) Advanced GCE Mathematics (MEI) (7895) Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Mathematics (MEI) (3895) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME FOR THE UNITS

ent		Page
Introduct	tion to Advanced Mathematics	1
Concept	s for Advanced Mathematics	5
Methods	for Advanced Mathematics	7
Applicati	ons of Advanced Mathematics	11
) Further (Concepts for Advanced Mathematics	16
?) Further I	Methods for Advanced Mathematics	20
Differential Ec	quations	27
Mechanics 1		31
Mechanics 2		37
Mechanics 3		41
Statistics 1		46
Statistics 2		50
Statistics 3		54
Decision Matl	hematics 1	58
Numerical Me	ethods	64
esholds		66
ti))))) 11 11 11 11 11 11	tent Introduct Concept Methods Applicati Applicati Sufferential Ed Mechanics 1 Mechanics 2 Mechanics 3 Statistics 1 Statistics 2 Statistics 3 Decision Math Numerical Met resholds	tent Introduction to Advanced Mathematics Concepts for Advanced Mathematics Methods for Advanced Mathematics Applications of Advanced Mathematics Further Concepts for Advanced Mathematics Further Methods Furt

4751 (C1) Introduction to Advanced Mathematics

Section A

1	$[v=][\pm]\sqrt{\frac{2E}{m}}$ www	3	M2 for $v^2 = \frac{2E}{m}$ or for $[v=][\pm]\sqrt{\frac{E}{\frac{1}{2}m}}$ or	
			M1 for a correct constructive first step and M1 for $v = [\pm]\sqrt{k}$ ft their $v^2 = k$;	3
			if M0 then SC1 for $\sqrt{E}/\frac{1}{2}m$ or $\sqrt{2E/m}$ etc	
2	$\frac{3x-4}{x+1}$ or $3-\frac{7}{x+1}$ www as final answer	3	M1 for $(3x - 4)(x - 1)$ and M1 for $(x + 1)(x - 1)$	3
3	(i) 1	1		
	(ii) 1/64 www	3	M1 for dealing correctly with each of reciprocal, square root and cubing (allow 3 only for 1/64) eg M2 for 64 or -64 or $1/\sqrt{4096}$ or $\frac{1}{4^3}$ or M1 for $1/16^{3/2}$ or 4^3 or -4^3 or 4^{-3} etc	4
4	6x + 2(2x - 5) = 7	M1	for subst or multn of eqns so one pair of	
	10 <i>x</i> = 17	M1	coeffts equal (condone one error) simplification (condone one error) or appropriate addn/subtn to eliminate variable	
	x = 1.7 o.e. isw	A1	allow as separate or coordinates as	
	y – 1.0 0.e .isw	AI	graphical soln: M0	4
5	(i) −4/5 or −0.8 o.e.	2	M1 for 4/5 or 4/ -5 or 0.8 or $-4.8/6$ or correct method using two points on the line (at least one correct) (may be graphical) or for $-0.8x$ o.e.	
	(ii) (15, 0) or 15 found www	3	M1 for y = their (i) x + 12 o.e. or $4x$ + 5 y = k and (0, 12) subst and M1 for using y = 0 eg -12 = -0.8 x or ft their eqn	
			or M1 for given line goes through $(0, 4.8)$ and $(6, 0)$ and M1 for $6 \times 12/4.8$ graphical soln: allow M1 for correct required line drawn and M1 for answer within 2mm of $(15, 0)$	5

4751	Mark S	Scheme	January 2008	N.Mymai	My Maens HISCIOUD
6	f(2) used $2^3 + 2k + 7 = 3$	M1 M1	or division by $x - 2$ as far as $x^2 + 2x$ obtained correctly or remainder $3 = 2(4 + k) + 7$ o.e. 2nd M1 dep on first		·com
	<i>k</i> = -6	A1		3	
7	(i) 56	2	M1 for $\frac{8 \times 7 \times 6}{3 \times 2 \times 1}$ or more simplified		
	(ii) −7 or ft from −their (i)/8	2	M1 for 7 or ft their (i)/8 or for 56 × $(-1/2)^3$ o.e. or ft; condone x^3 in answer or in M1 expression; 0 in qn for just Pascal's triangle seen	4	
8	(i) 5√3	2	M1 for $\sqrt{48} = 4\sqrt{3}$		
	(ii) common denominator = $(5 - \sqrt{2})(5 + \sqrt{2})$ =23 numerator = 10	M1 A1 B1	allow M1A1 for $\frac{5-\sqrt{2}}{23} + \frac{5+\sqrt{2}}{23}$ allow 3 only for 10/23	5	
9	(i) <i>n</i> = 2 <i>m</i>	M1	or any attempt at generalising; M0 for just trying numbers		
	$3n^2 + 6n = 12m^2 + 12m$ or = $12m(m + 1)$	M2	<u>or</u> M1 for $3n^2 + 6n = 3n (n + 2) = 3 \times$ even × even <u>and</u> M1 for explaining that 4 is a factor of even × even <u>or</u> M1 for 12 is a factor of 6 <i>n</i> when <i>n</i> is even <u>and</u> M1 for 4 is a factor of n^2 so 12 is a factor of $3n^2$		
	(ii) showing false when <i>n</i> is odd e.g. $3n^2 + 6n = odd + even = odd$	B2	or $3n(n+2) = 3 \times \text{odd} \times \text{odd} = \text{odd}$ or counterexample showing not always true; M1 for false with partial explanation or incorrect calculation	5	17

Section B

				mm	- m	12
475 ²	1	Mark Sche	me	January 2008	I'YMal	Maths
Sect	tion E	3				°CIOUU.C.
10	i	correct graph with clear asymptote $x = 2$ (though need not be marked)	G2	G1 for one branch correct; condone (0, $-\frac{1}{2}$) not shown SC1 for both sections of graph shifted two to left		ON
		$(0 - \frac{1}{6})$ shown	G1	allow seen calculated	3	
	ii	11/5 or 2.2 o.e. isw	2	M1 for correct first step	2	
	iii	$x = \frac{1}{2}$	M1	or equivs with <i>y</i> s		
		x-2 x(x-2) = 1 o.e. $x^2 - 2x - 1 [= 0]$; ft their equiv eqn attempt at quadratic formula $1 \pm \sqrt{2}$ cao position of points shown	M1 M1 A1 B1	or $(x - 1)^2 - 1 = 1$ o.e. or $(x - 1) = \pm \sqrt{2}$ (condone one error) on their curve with $y = x$ (line drawn or $y = x$ indicated by both coords); condone intent of diagonal line with gradient approx 1through origin as y = x if unlabelled	6	11
11	i	$(x-2.5)^2$ o.e. - 2.5 ² + 8 $(x-2.5)^2 + 7/4$ o.e.	M1 M1 A1	for clear attempt at -2.5^2 allow M2A0 for (x - 2.5) + 7/4 o.e. with no (x - 2.5) ² seen		
		min $y = 7/4$ o.e. [so above x axis] or commenting $(x - 2.5)^2 \ge 0$	B1	ft, dep on $(x - a)^2 + b$ with <i>b</i> positive; condone starting again, showing $b^2 - 4ac < 0$ or using calculus	4	
	ii	correct symmetrical quadratic	G1			
		8 marked as intercept on <i>y</i> axis tp (5/2, 7/4) o.e. or ft from (i)	G1 G1	or (0, 8) seen in table	3	
	iii	$x^2 - 5x - 6$ seen or used -1 and 6 obtained x < -1 and $x > 6$ isw or ft their solns	M1 M1 M1	or $(x - 2.5)^2$ [> or =] 12.25 or ft 14 - b also implies first M1 if M0, allow B1 for one of $x < -1$ and x > 6	3	
	iv	min = (2.5, - 8.25) or ft from (i) so yes, crosses	M1 A1	or M1 for other clear comment re translated 10 down and A1 for referring to min in (i) or graph in (ii); or M1 for correct method for solving $x^2 -5x -2 = 0$ or using $b^2 - 4ac$ with this and A1 for showing real solns eg $b^2 - 4ac = 33$; allow M1A0 for valid comment but error in -8.25 ft; allow M1 for showing <i>y</i> can be neg eg (0, -2) found and A1 for correct conclusion	2	12

			mm		4
4751	Mark Sche	eme	January 2008	nymai	thscio
12 i	$(x-4)^2 - 16 + (y-2)^2 - 4 = 9$ o.e.	M2	M1 for one completing square or for $(x - 4)^2$ or $(y - 2)^2$ expanded correctly <u>or</u> starting with $(x - 4)^2 + (y - 2)^2 = r^2$: M1 for correct expn of at least one bracket and M1 for 9 + 20 = r^2 o.e.		Sud.Co.
	rad = √29	B1	or using $x^2 - 2gx + y^2 - 2fy + c = 0$ M1 for using centre is (g, f) [must be quoted] and M1 for $r^2 = g^2 + f^2 - c$	3	
ii	$4^2 + 2^2$ o.e = 20 which is less than 29	M1 A1	allow 2 for showing circle crosses x axis at -1 and 9 or equiv for y (or showing one positive; one negative); 0 for graphical solutions (often using A and B from (iii) to draw circle)	2	
	showing midpt of AB = (4, 2) and showing AB = $2\sqrt{29}$ or showing AC or BC = $\sqrt{29}$ or that A or B lie on circle <u>or</u> showing both A and B lie on circle (or AC = BC = $\sqrt{29}$), and showing AB = $2\sqrt{29}$ or that C is midpt of AB or that C is on AB	2 2 2 2	in each method, two things need to be established. Allow M1 for the concept of what should be shown and A1 for correct completion with method shown allow M1A0 for AB just shown as $\sqrt{116}$ not $2\sqrt{29}$ allow M1A0 for stating mid point of AB = (4,2) without working/method shown		
	or that gradients of AB and AC are the same or equiv. <u>or</u> showing C is on AB and showing both A and B are on	2 2	NB showing AB = $2\sqrt{29}$ and C lies on AB is not sufficient – earns 2 marks only if M0, allow SC2 for accurate graph		
iv	circle or AC = BC = $\sqrt{29}$ grad AC or AB or BC = -5/2 o.e. grad tgt = -1/their grad AC tgt is y - 7 = their m (x - 2) o.e.	M1 M1 M1	of circle drawn with compasses and AB joined with ruled line through C. may be seen in (iii) but only allow this M1 if they go on to use in this part allow for m_1m_2 =-1 used eg y = their mx + c then (2, 7) subst;	4	
	<i>y</i> = 2/5 <i>x</i> + 31/5 o.e.	A1	NO if grad AC used condone $y = 2/5x + c$ and $c = 31/5$ o.e.	4	13

January 20. Mains Cloud. com

4752 (C2) Concepts for Advanced Mathematics

Section A

1	$40x^{3}$	2	-1 if extra term	2
2	(i) 3	1		
	(ii) 141	2	M1 for $9 \times (1 + 2 + 3 + 4 + 5) + 1 + 2 + 3$	3
3	right angled triangle with 1 and 2 on correct sides Pythagoras used to obtain hyp = $\sqrt{5}$ $\cos \theta = \frac{a}{h} = \frac{2}{\sqrt{5}}$	M1 M1 A1	or M1 for $\sin\theta = \frac{1}{2}\cos\theta$ and M1 for substituting in $\sin^2 \theta + \cos^2 \theta = 1$ E1 for sufficient working	3
4	(i)line along $y = 6$ with V (1, 6), (2, 2), (3, 6)	2	1 for two points correct	
	(ii) line along $y = 3$ with V (-2,3), (-1,1), (0,3)	2	1 for two points correct	4
5	$2x^6 + \frac{3}{4}x^{\frac{4}{3}} + 7x + c$	5	1 for $2x^{6}$; 2 for $\frac{3}{4}x^{\frac{4}{3}}$ or 1 for other $kx^{\frac{4}{3}}$; 1 for $7x$;	5
			1 for +c	
6	(1) correct sine shape through O amplitude of 1 and period 2π shown	1		
	(ii) $7\pi/6$ and $11\pi/6$	3	B2 for one of these; 1 for $-\pi/6$ found	5
7	(i) 60	2	M1 for $2^2 + 2^3 + 2^4 + 2^5$ o.e.	
	(ii) -6 (iii)	1		
		1 1	Correct in both quadrants Through (0, 1) shown dep.	5
8	$r = \frac{1}{3} \text{ s.o.i.}$ a = 54 or ft 18 ÷ their r	2 M1	1 mark for ar = $18 \text{ and } ar^3 = 2 \text{ s.o.i.}$	
	$S = \frac{a}{1-r} \text{ used with } -1 < r < 1$	M1 A1		5
9	(i) 0.23 c.a.o.	1		
	(ii) 0.1 or 1/10	1	10 ⁻¹ not sufficient	
	(iii) $4(3x+2)$ or $12x+8$	1		1
	(iv) $[y =] 10^{3x+2}$ o.e.	1		4

Section B

				mm	×	4
475	2	Mark Sche	eme	January 2008	nyma	Maths
Sec	tion E	3				°CIOUD.CC
10	i	$h = 120/x^2$ $A = 2x^2 + 4xh$ o.e. completion to given answer	B1 M1 A1	at least one interim step shown	3	⁵ OM
	ii	$A' = 4x - 480/x^2$ o.e. $A'' = 4 + 960 / x^3$	2 2	1 for kx^{-2} o.e. included ft their A' only if kx^{-2} seen ; 1 if one error	4	
	111	use of $A' = 0$ $x = \sqrt[3]{120}$ or 4.9(3) Test using A' or A'' to confirm minimum Substitution of their x in A A = 145.9 to 146	M1 A1 T1 M1 A1	Dependent on previous M1	5	
11	iA	$BC^{2} = 348^{2} + 302^{2} - 2 \times 348 \times 302 \times \cos 72^{\circ}$ BC = 383.86 1033.86[m] or ft 650 + their BC	M2 A1 1	M1 for recognisable attempt at Cosine Rule to 3 sf or more accept to 3 sf or more	4	
	iВ	$\frac{\sin B}{302} = \frac{\sin 72}{\text{their } BC}$ B = 48.4 355 - their B o.e. answer in range 306 to307	M1 A1 M1 A1	Cosine Rule acceptable or Sine Rule to find C or 247 + their C	4	
	ii	Arc length PQ = $\frac{224}{360} \times 2\pi \times 120$ o.e. or 469.1 to 3 sf or more QP = 222.5to 3 sf or more answer in range 690 to 692 [m]	M2 B1 A1	M1 for $\frac{136}{360} \times 2\pi \times 120$	4	
12	iA	$x^4 = 8x$ (2, 16) c.a.o. PQ = 16 and completion to show $\frac{1}{2} \times 2 \times 16 = 16$	M1 A1 A1	NB answer 16 given	3	
	iВ	$x^{5}/5$ evaluating their integral at their co-ord of P and zero [or 32/5 o.e.] 9.6 o.e.	M1 M1 A1	ft only if integral attempted, not for x^4 or differentiation c.a.o.	3	
	iiA	$6x^2h^2 + 4xh^3 + h^4$	2	B1 for two terms correct.	2	
	iiB	$4x^3 + 6x^2h + 4xh^2 + h^3$	2	B1 for three terms correct	2	
	iiC	4x ³	1		1	
	iiD	gradient of [tangent to] curve	1		1	

January 20. Mains Cloud. com

4753 (C3) Methods for Advanced Mathematics

Section A

1 $y = (1+6x^2)^{1/3}$ $\Rightarrow \frac{dy}{dx} = \frac{1}{3}(1+6x^2)^{-2/3}.12x$ $= 4x(1+6x^2)^{-2/3}$	M1 B1 A1 A1 [4]	chain rule used $\frac{1}{3}u^{-2/3}$ ×12x cao (must resolve 1/3 × 12) Mark final answer
2 (i) $fg(x) = f(x - 2)$ = $(x - 2)^2$ $gf(x) = g(x^2) = x^2 - 2.$	M1 A1 A1 [3]	forming a composite function mark final answer If fg and gf the wrong way round, M1A0A0
(ii) $fg(x)$ gf(x)	B1ft B1ft [2]	fg – must have (2, 0)labelled (or inferable from scale). Condone no <i>y</i> -intercept, unless wrong gf – must have (0, –2) labelled (or inferable from scale) Condone no x-intercepts, unless wrong Allow ft only if fg and gf are correct but wrong way round.
3 (i) When $n = 1$, 10 000 = $A e^{b}$ when $n = 2$, 16 000 = $A e^{2b}$ $\Rightarrow \frac{16000}{10000} = \frac{Ae^{2b}}{Ae^{b}} = e^{b}$ $\Rightarrow e^{b} = 1.6$ $\Rightarrow b = \ln 1.6 = 0.470$ A = 10000/1.6 = 6250.	B1 B1 M1 E1 B1 B1 [6]	soi soi eliminating A (do not allow verification) SCB2 if initial 'B's are missing, and ratio of years = 1.6 = e^b In 1.6 or 0.47 or better (mark final answer) cao – allow recovery from inexact <i>b</i> 's
(ii) When $n = 20$, $P = 6250 \times e^{0.470 \times 20}$ = £75,550,000	M1 A1 [2]	substituting $n = 20$ into their equation with their A and b Allow answers from £75 000 000 to £76 000 000.
4 (i) 5 = <i>k</i> /100 ⇒ <i>k</i> = 500*	E1 [1]	NB answer given
(ii) $\frac{dP}{dV} = -500V^{-2} = -\frac{500}{V^2}$	M1 A1 [2]	$(-1)V^{-2}$ o.e allow $-k/V^2$
(iii) $\frac{dP}{dt} = \frac{dP}{dV} \cdot \frac{dV}{dt}$	M1	chain rule (any correct version)
When V = 100, $dP/dV = -500/10000 =$ -0.05 dV/dt = 10 $\Rightarrow dP/dt = -0.05 \times 10 = -0.5$ So P is decreasing at 0.5 Atm/s	B1ft B1 A1 [4]	(soi) (soi) –0.5 cao

4753	з Л	/lark Sc	heme January 2008
5(i)	$p = 2, 2^{p} - 1 = 3$, prime $p = 3, 2^{p} - 1 = 7$, prime $p = 5, 2^{p} - 1 = 31$, prime $p = 7, 2^{p} - 1 = 127$, prime	M1 E1 [2]	Testing at least one prime testing all 4 primes (correctly) Must comment on answers being prime (allow ticks) Testing $p = 1$ is E0
(ii)	$23 \times 89 = 2047 = 2^{11} - 1$ 11 is prime, 2047 is not So statement is false.	M1 E1 [2]	$2^{11} - 1$ must state or imply that 11 is prime (<i>p</i> = 11 is sufficient)
$\begin{array}{l} 6 \text{ (i)} \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \end{array}$	$e^{2y} = x^{2} + y$ $2e^{2y} \frac{dy}{dx} = 2x + \frac{dy}{dx}$ $(2e^{2y} - 1) \frac{dy}{dx} = 2x$ $\frac{dy}{dx} = \frac{2x}{2e^{2y} - 1} *$	M1 A1 M1 E1 [4]	Implicit differentiation – allow one slip (but with dy/dx both sides) collecting terms
$(ii) \\ 0 \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow$	Gradient is infinite when $2e^{2y} - 1 =$ $e^{2y} = \frac{1}{2}$ $2y = \ln \frac{1}{2}$ $y = \frac{1}{2} \ln \frac{1}{2} = -0.347 (3 \text{ s.f.})$ $x^2 = e^{2y} - y = \frac{1}{2} - (-0.347)$ = 0.8465 x = 0.920	M1 A1 M1 A1 [4]	must be to 3 s.f. substituting their y and solving for x cao – must be to 3 s.f., but penalise accuracy once only.

Section B

		mm my
4753	Mark Sch	eme January 2008
Section B		
7(i) $y = 2x \ln(1 + x)$ $\Rightarrow \frac{dy}{dx} = \frac{2x}{1+x} + 2\ln(1+x)$ When $x = 0$, $dy/dx = 0 + 2 \ln 1 = 0$ \Rightarrow origin is a stationary point.	M1 B1 A1 E1	product rule d/dx(ln(1+x)) = 1/(1+x) soi www (i.e. from correct derivative)
(ii) $\frac{d^2 y}{dx^2} = \frac{(1+x) \cdot 2 - 2x \cdot 1}{(1+x)^2} + \frac{2}{1+x}$ $= \frac{2}{(1+x)^2} + \frac{2}{1+x}$ When $x = 0$, $\frac{d^2 y}{dx^2} = 2 + 2 = 4 > 0$ \Rightarrow (0, 0) is a min point	M1 A1ft A1 E1 [5]	Quotient or product rule on their $2x/(1 + x)$ correctly applied to their $2x/(1+x)$ o.e., e.g. $\frac{4+2x}{(1+x)^2}$ cao substituting $x = 0$ into their d^2y/dx^2 www – dep previous A1
(iii) Let $u = 1 + x \Rightarrow du = dx$ $\Rightarrow \int \frac{x^2}{1+x} dx = \int \frac{(u-1)^2}{u} du$ $= \int \frac{(u^2 - 2u + 1)}{u} du$	M1	$\frac{(u-1)^2}{u}$
$\Rightarrow \int_{0}^{1} \frac{x^{2}}{1+x} dx = \int_{1}^{2} (u-2+\frac{1}{u}) du \\ = \left[\frac{1}{2}u^{2}-2u+\ln u\right]_{1}^{2} \\ = 2-4+\ln 2-(\frac{1}{2}-2u+\frac{1}{2}) \\ = \ln 2-\frac{1}{2}u^{2} + \ln 2u + \ln 2u$	E1 B1 B1 ln 1) M1 A1	www (but condone du omitted except in final answer) changing limits (or substituting back for x and using 0 and 1) $\left[\frac{1}{2}u^2 - 2u + \ln u\right]$ substituting limits (consistent with u or x) cao
(iv) $A = \int_0^1 2x \ln(1+x) dx$ Parts: $u = \ln(1+x), du/dx = 1/(1+x)$ $dv/dx = 2x \Rightarrow v = x^2$ $= \left[x^2 \ln(1+x) \right]_0^1 - \int_0^1 \frac{x^2}{1+x} dx$ $= \ln 2 - \ln 2 + \frac{1}{2} = \frac{1}{2}$	[6] M1 A1 M1 A1	soi substituting their $\ln 2 - \frac{1}{2}$ for $\int_0^1 \frac{x^2}{1+x} dx$ cao

4753	Ма	rk Sch	eme January 2008
8 (i)	Stretch in <i>x</i> -direction s.f. ¹ / ₂ translation in <i>y</i> -direction 1 unit up	M1 A1 M1 A1 [4]	(in either order) – allow 'contraction' dep 'stretch' allow 'move', 'shift', etc – direction can be inferred from $\begin{pmatrix} 0\\1 \end{pmatrix}$ or $\begin{pmatrix} 0\\1 \end{pmatrix}$ dep 'translation'. $\begin{pmatrix} 0\\1 \end{pmatrix}$ alone is M1 A0
(ii)	$A = \int_{-\pi/4}^{\pi/4} (1 + \sin 2x) dx$ = $\left[x - \frac{1}{2} \cos 2x \right]_{-\pi/4}^{\pi/4}$ = $\pi/4 - \frac{1}{2} \cos \frac{\pi}{2} + \frac{\pi}{4} + \frac{1}{2} \cos \frac{(-\pi/2)}{2}$ = $\pi/2$	M1 B1 M1 A1 [4]	correct integral and limits. Condone dx missing; limits may be implied from subsequent working. substituting their limits (if zero lower limit used, must show evidence of substitution) or 1.57 or better – cao (www)
(iii) ⇒	$y = 1 + \sin 2x$ $dy/dx = 2\cos 2x$ When $x = 0$, $dy/dx = 2$ So gradient at $(0, 1)$ on $f(x)$ is 2 gradient at $(1, 0)$ on $f^{-1}(x) = \frac{1}{2}$	M1 A1 A1ft B1ft [4]	differentiating – allow 1 error (but not $x + 2\cos 2x$) If 1, then must show evidence of using reciprocal, e.g. 1/1
(iv) [Domain is $0 \le x \le 2$. y 24 $-\pi/4$ 0 $\pi/4$ 2 x	B1 M1 A1 [3]	Allow 0 to 2, but not $0 < x < 2$ or <i>y</i> instead of <i>x</i> clear attempt to reflect in $y = x$ correct domain indicated (0 to 2), and reasonable shape
(\mathbf{v}) \Rightarrow \Rightarrow \Rightarrow	$y = 1 + \sin 2x \ x \leftrightarrow y$ $x = 1 + \sin 2y$ $\sin 2y = x - 1$ $2y = \arcsin(x - 1)$ $y = \frac{1}{2} \arcsin(x - 1)$	M1 A1 [2]	or $\sin 2x = y - 1$ cao

January 20. Mains Cloud. com

4754 (C4) Applications of Advanced Mathematics

Section A

1 $3 \cos \theta + 4\sin \theta = R \cos(\theta - \alpha)$ = $R(\cos \theta \cos \alpha + \sin \theta \sin \alpha)$ $\Rightarrow R \cos \alpha = 3$, $R \sin \alpha = 4$ $\Rightarrow R^2 = 3^2 + 4^2 = 25 \Rightarrow R = 5$ $\tan \alpha = 4/3 \Rightarrow \alpha = 0.9273$	M1 B1 M1A1	R = 5 cwo
$5 \cos(\theta - 0.9273) = 2$ $\Rightarrow \cos(\theta - 0.9273) = 2/5$ $\theta - 0.9273 = 1.1593, -1.1593$ $\Rightarrow \theta = 2.087, -0.232$	M1 A1 A1 [7]	and no others in the range
2(i) $(1-2x)^{\frac{1}{2}} = 1 - \frac{1}{2}(-2x) + \frac{(-\frac{1}{2})\cdot(-\frac{3}{2})}{2!}(-2x)^2 + \dots$ = $1 + x + \frac{3}{2}x^2 + \dots$ Valid for $-1 < -2x < 1 \Rightarrow -\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1 M1 A1 [5]	binomial expansion with $p = -\frac{1}{2}$ correct expression cao
(ii) $\frac{1+2x}{\sqrt{1-2x}} = (1+2x)(1+x+\frac{3}{2}x^2+)$ = $1+x+\frac{3}{2}x^2+2x+2x^2+$ = $1+3x+\frac{7}{2}x^2+$	M1 A1ft A1 [3]	substituting their $1+x+\frac{3}{2}x^2+$ and expanding cao

4754	Mark Scheme	January 2008	My Mains
4(i) $\sin(\theta + 45^\circ) = \cos \theta$ $\Rightarrow \sin \theta \cos 45 + \cos \theta \sin 45 = \cos \theta$ $\Rightarrow (1/\sqrt{2}) \sin \theta + (1/\sqrt{2}) \cos \theta = \cos \theta$ $\Rightarrow \sin \theta + \cos \theta = \sqrt{2} \cos \theta$ $\Rightarrow \sin \theta = (\sqrt{2} - 1) \cos \theta$ $\Rightarrow \frac{\sin \theta}{\cos \theta} = \tan \theta = \sqrt{2} - 1 *$	M1 B1 A1 M1 E1 [5]	compound angle formula $\sin 45 = 1/\sqrt{2}$, $\cos 45 = 1/\sqrt{2}$ collecting terms	^{1.COM}
(ii) $\tan \theta = \sqrt{2} - 1$ $\Rightarrow \theta = 22.5^{\circ},$ 202.5°	B1 B1 [2]	and no others in the range	
5 $\frac{4}{x(x^2+4)} = \frac{A}{x} + \frac{Bx+C}{x^2+4}$ = $\frac{A(x^2+4) + (Bx+C)x}{x(x^2+4)}$	M1	correct partial fractions	
$\Rightarrow 4 = A(x^{2} + 4) + (Bx + C)x$ $x = 0 \Rightarrow 4 = 4A \Rightarrow A = 1$ coefft of x^{2} : $0 = A + B \Rightarrow B = -1$ coeffts of x: $0 = C$ $\Rightarrow \frac{4}{x(x^{2} + 4)} = \frac{1}{x} - \frac{x}{x^{2} + 4}$	M1 B1 DM1 A1 A1 [6]	A=1 Substitution or equating coeffts B=-1 C=0	
6 $\operatorname{cosec} \theta = 3$ $\Rightarrow \sin \theta = 1/3$ $\Rightarrow \theta = 19.47^{\circ},$ 160.53°	M1 A1 A1 [3]	and no others in the range	

Section B

4754 Section B	Mark Scheme	January 2008	My Arstins HINSCIOUD.CO.
7(i) $\overrightarrow{\text{CD}} = \begin{pmatrix} -6\\ 6\\ 24 \end{pmatrix} \overrightarrow{\text{CB}} = \begin{pmatrix} 0\\ 20\\ 0 \end{pmatrix}.$	B1 B1 [2]		
(ii) $\sqrt{(-6)^2 + 6^2 + 24^2}$ = 25.46 cm	M1 A1 [2]		
(iii) $\overrightarrow{\text{CD}} \begin{pmatrix} 4\\0\\1 \end{pmatrix} = \begin{pmatrix} -6\\6\\24 \end{pmatrix} \begin{pmatrix} 4\\0\\1 \end{pmatrix} = -24 + 0 + 24 = 0$ (4) (0) (4)	M1 A1	using scalar product	
$\overrightarrow{CB} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 20 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 0 + 0 + 0 = 0$ $\Rightarrow \text{plane BCDE is } 4x + z = c$ At C (say) $4 \times 15 + 0 = c \Rightarrow c = 60$ $\Rightarrow \text{plane BCDE is } 4x + z = 60$	B1 M1 A1 [5]	or other equivalent methods	
(iv) OG: $\mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 6 \\ 24 \end{pmatrix}$ AF: $\mathbf{r} = \begin{pmatrix} 0 \\ 20 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -6 \end{pmatrix}$	B1 B1		
$\begin{pmatrix} 0 \end{pmatrix} & \begin{pmatrix} 24 \end{pmatrix} \\ At (5, 10, 40), 3\lambda = 5 \Rightarrow \lambda = 5/3 \\ \Rightarrow 6\lambda = 10, 24\lambda = 40, \text{ so consistent.} \\ At (5, 10, 40), 3\mu = 5 \Rightarrow \mu = 5/3 \\ \Rightarrow 20 - 6\mu = 10, 24\mu = 40, \text{ so consistent.} \\ \text{So lines meet at } (5, 10, 40)^* \end{cases}$	M1 E1 E1 [5]	evaluating parameter and checking consistency. [or other methods, e.g. solving]	
(v) h=40 POABC: $V = 1/3 \times 20 \times 15 \times 40$ $= 4000 \text{ cm}^3$. PDEFG: $V = 1/3 \times 8 \times 6 \times (40-24)$ $= 256 \text{ cm}^3$ \Rightarrow vol of ornament = 4000 - 256 = 3744	$\begin{array}{c} B1\\ M1\\ \end{array}$ $\begin{array}{c} A1\\ A1\\ \end{array}$ $[4]$	soi 1/3 x w x d x h used for either –condone one error both volumes correct cao	

4754	Mark Scheme	January 2008	My Assess
8(i) $\cos \theta = \frac{x}{k}, \sin \theta = \frac{2y}{k}$ $\cos^2 \theta + \sin^2 \theta = 1$ $\Rightarrow \left(\frac{x}{k}\right)^2 + \left(\frac{2y}{k}\right)^2 = 1$ $\Rightarrow \frac{x^2}{k^2} + \frac{4y^2}{k^2} = 1$ $\Rightarrow x^2 + 4y^2 = k^2 *$	M1 M1 E1 [3]	Used substitution	Com
(ii) $\frac{dx}{d\theta} = -k\sin\theta, \frac{dy}{d\theta} = \frac{1}{2}k\cos\theta$ $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = -\frac{\frac{1}{2}k\cos\theta}{k\sin\theta}$ $= -\frac{1}{2}\cot\theta$ $-\frac{x}{4y} = -\frac{2k\cos\theta}{4k\sin\theta} = -\frac{1}{2}\cot\theta = \frac{dy}{dx}$ <i>or</i> , by differentiating implicitly 2x + 8y dy/dx = 0 $\Rightarrow dy/dx = -2x/8y = -x/4y^*$	M1 A1 E1 M1 A1 E1 [3]	oe	
(iii) <i>k</i> = 2	B1 [1]		
(iv) $k = 1$ k = 2 k = 3 k = 4	B1 B1 B1 [3]	1 correct curve –shape and position 2 or more curves correct shape- in concentric form all 3 curves correct	
(v) grad of stream path = -1/grad of co $\Rightarrow \frac{dy}{dx} = -\frac{1}{(-x/4y)} = \frac{4y}{x} *$	ntour M1 E1 [2]		
(vi) $\frac{dy}{dx} = \frac{4y}{x} \Rightarrow \int \frac{dy}{y} = \int \frac{4dx}{x}$ $\Rightarrow \ln y = 4 \ln x + c = \ln e^{c}x^{4}$ $\Rightarrow y = Ax^{4} \text{ where } A = e^{c}.$ When $x = 2, y = 1 \Rightarrow 1 = 16A \Rightarrow A = 1/14$ $\Rightarrow y = x^{4}/16 *$	6 M1 A1 M1 M1 A1 E1 [6]	Separating variables $\ln y = 4 \ln x (+c)$ antilogging correctly (at any stage) substituting $x = 2, y = 1$ evaluating a correct constant www	

			mm	4
4754	Mark Scheme	J	anuary 2008	1 Agents
Paper I	B Comprehension 4754 (C4)			SCIOUD.CO
1	4, 1, 5, 6, 11, 17	B1 B1	for 11 and 17 for 1 and 4	NT,
2	Even, odd, odd, even, odd, odd recurs 100 th term is therefore even	M1 A1	for reason www	
3	$\phi^6 = (3\phi + 2) + (5\phi + 3) = 8\phi + 5$	B1		
4	$1 - EH = 1 - CG = 1 - (\phi - 1)$	M1	oe	
	$=2-\phi=2-\left(\frac{1+\sqrt{5}}{2}\right)$	A1		
	$=\frac{3-\sqrt{5}}{2}$	A1		
5	(i)Gradients $-\frac{1}{4}$ and $\frac{1}{4}$	B1 B1		
	(ii) Product of gradients: $-\frac{1}{\phi} \times \frac{1}{\phi - 1} = -\frac{1}{\phi^2 - \phi}$	M1		
	$=-\frac{1}{1}=-1$	EI		
6	$\phi + 1 = \frac{1 + \sqrt{5}}{2} + 1$			
	$\frac{1}{2\phi - 1} = \frac{1}{1 + \sqrt{5} - 1}$	MT		
	$=\frac{3+\sqrt{5}}{2\sqrt{5}}$	A1		
	$=\frac{(3+\sqrt{5})\sqrt{5}}{2\sqrt{5}}=\frac{3\sqrt{5}+5}{10}$	E1		
	$2\sqrt{5}\times\sqrt{5}$ 10			
7	$a + (a + d) = a + 2d \implies a = d$	M1		
	$(a+d)+(a+2d) = a+3d \implies a=0$	M1		
	a = d = 0 *	E1 [18]		

Paper B Comprehension 4754 (C4)

Qu	Answer	Mark	Comment
Sectio	on A		
1(i)	$\mathbf{BA} = \begin{pmatrix} 3 & 1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ -4 & 14 \end{pmatrix}$	M1 A1 [2]	Attempt to multiply c.a.o.
1(ii)	det BA = $(6 \times 14) - (-4 \times 0) = 84$	M1 A1	Attempt to calculate any determinant
	$3 \times 84 = 252$ square units	A1(ft) [3]	c.a.o. Correct area
2(i)	$\alpha^{2} = (-3+4j)(-3+4j) = (-7-24j)$	M1	Attempt to multiply with use of $j^2 = -1$
		A1 [2]	c.a.o.
2(ii)	$ \alpha = 5$ arg $\alpha = \pi - \arctan \frac{4}{3} = 2.21$ (2d.p.) (or 126.87°)	B1 B1	Accept 2.2 or 127°
	$\alpha = 5(\cos 2.21 + j\sin 2.21)$	B1(ft)	Accept degrees and (r, θ) form s.c. lose 1 mark only if α^2 used throughout (ii)
2(;)		[3]	Showing 2 patiofics the equation
3(1)	$3^{3} + 3^{2} - 7 \times 3 - 15 = 0$ $z^{3} + z^{2} - 7z - 15 = (z - 3)(z^{2} + 4z + 5)$	M1 A1	(may be implied) Valid attempt to factorise Correct quadratic factor
	$z = \frac{-4 \pm \sqrt{16 - 20}}{2} = -2 \pm j$	M1	Use of quadratic formula, or other valid method
	So other roots are $-2 + j$ and $-2 - j$	A1	One mark for both c.a.o.
3(ii)	$ \begin{array}{c} In \\ x \\ -2 \\ x \\ x \\ x \\ x \\ x \\ x \\ \end{array} $	[5] B2 [2]	Minus 1 for each error ft provided conjugate imaginary roots

4755 (FP1) Further Concepts for Advanced Mathematics

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4755	Mark Scher	ne	January 20.	My Hashs
$ \begin{array}{ c c c c c } \hline \begin{array}{ c c c } \hline \\ = \frac{1}{6}n(n+1)(2n+1) - \frac{1}{2}n(n+1) - 2n \\ = \frac{1}{6}n\left[(n+1)(2n+1) - 3(n+1) - 12\right] \\ = \frac{1}{6}n(2n^2+3n+1-3n-3-12) \\ = \frac{1}{6}n(2n^2+3n+1-3n-3-12) \\ = \frac{1}{6}n(2n^2-14) \\ = \frac{1}{3}n(n^2-7) \\ \hline \begin{array}{ c c } \hline \\ = \frac{1}{3}n(n^2-7) \\ \hline \\ = \frac{1}{3}n(n^2-7) \\ \hline \\ = \frac{1}{3}n(n^2-7) \\ \hline \\ $	4	$\sum_{n=1}^{n} \left[(r+1)(r-2) \right] = \sum_{n=1}^{n} r^2 - \sum_{n=1}^{n} r - 2n$	M1	Attempt to split sum up	Com
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$= \frac{1}{6}n(n+1)(2n+1) - \frac{1}{2}n(n+1) - 2n$	A2	Minus one each error	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$= \frac{1}{6} n \Big[(n+1)(2n+1) - 3(n+1) - 12 \Big]$	M1	Attempt to factorise	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$=\frac{1}{6}n\left(2n^{2}+3n+1-3n-3-12\right)$	M1	Collecting terms	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$=\frac{1}{6}n\left(2n^2-14\right)$			
5(i) $p = -3, r = 7$ B2 (n = $\alpha\beta + \alpha\gamma + \beta\gamma$ One mark for each s. B1 if b and d used instead of p and r5(ii) $q = \alpha\beta + \alpha\gamma + \beta\gamma$ B1One mark for each s. B1 if b and d used instead of p and r $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$ $= (\alpha + \beta + \gamma)^2 - 2q$ $\Rightarrow 13 = 3^2 - 2q$ $\Rightarrow q = -2$ M1Attempt to find q using $\alpha^2 + \beta^2 + \gamma^2$ and $\alpha + \beta + \gamma$, but not $\alpha\beta\gamma$ 6(i) $a_2 = 7 \times 7 - 3 = 46$ $a_3 = 7 \times 46 - 3 = 319$ M1Use of inductive definition c.a.o.6(ii)When $n = 1, \frac{13 \times 7^6 + 1}{2} = 7$, so true for $n = 1$ Assume true for $n = k$ $a_k = \frac{13 \times 7^{k-1} + 1}{2}$ B1Correct use of part (i) (may be implied)6(iii)When $n = 1, \frac{13 \times 7^{k-1} + 1}{2} = -3$ M1Attempt to use $a_{k+1} = 7a_k - 3$ $= \frac{13 \times 7^k + 7 - 6}{2}$ $= \frac{13 \times 7^k + 1}{2}$ A1Correct simplificationBut this is the given result with $k + 1$ replacing k. Therefore if it is true for k k 1. Since it is tor for k k 1, it is true for k + 1. Since it is tor for k = 1, it is true for k + 1. Since it is tor for k = 1, it is true for k + 1. Since it is tor for k = 1, it is true for k + 1. Since it is tor for k = 1, it is true for k + 1. Since it is the of k = 1, it is true for k = 1, 2, 3 and so true for a logitiveE1		$=\frac{1}{3}n\left(n^2-7\right)$	A1 [6]	All correct	
$\begin{array}{c} \mathbf{G}(\mathbf{n}) \\ q = \alpha\beta + \alpha\gamma + \beta\gamma \\ \alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma) \\ = (\alpha + \beta + \gamma)^{2} - 2q \\ \Rightarrow 13 = 3^{2} - 2q \\ \Rightarrow q = -2 \end{array} \qquad $	5(i) 5(ii)	p = -3, r = 7	B2 [2]	One mark for each s.c. B1 if <i>b</i> and <i>d</i> used instead of <i>p</i> and <i>r</i>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3(II)	$q = \alpha\beta + \alpha\gamma + \beta\gamma$	B1		
$ \begin{array}{c c} = (\alpha + \beta + \gamma)^{2} - 2q \\ \Rightarrow 13 = 3^{2} - 2q \\ \Rightarrow q = -2 \end{array} \qquad $		$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$	M1	Attempt to find <i>q</i> using $\alpha^2 + \beta^2 + \gamma^2$ and $\alpha + \beta + \gamma$, but not $\alpha\beta\gamma$	
$\begin{array}{c c} 13-3-2q \\ \Rightarrow q=-2 \end{array} \qquad $		$= (\alpha + \beta + \gamma)^{2} - 2q$ $\implies 12 - 3^{2} - 2q$			
6(i) $a_2 = 7 \times 7 - 3 = 46$ $a_3 = 7 \times 46 - 3 = 319$ M1 A1 [2]Use of inductive definition c.a.o.6(ii)When $n = 1$, $\frac{13 \times 7^0 + 1}{2} = 7$, so true for $n = 1$ Assume true for $n = k$ $a_k = \frac{13 \times 7^{k-1} + 1}{2}$ Correct use of part (i) (may be implied) $a_k = \frac{13 \times 7^{k-1} + 1}{2}$ B1 E1Correct use of part (i) (may be implied) $a_{k+1} = 7 \times \frac{13 \times 7^{k-1} + 1}{2} - 3$ M1Attempt to use $a_{k+1} = 7a_k - 3$ $= \frac{13 \times 7^k + 7}{2} - 3$ M1Attempt to use $a_{k+1} = 7a_k - 3$ $= \frac{13 \times 7^k + 7}{2}$ A1Correct simplificationBut this is the given result with $k + 1$ replacing k. Therefore if it is true for k it is true for $k = 1, 2, 3$ and so true for $k = 1, it$ is true for $k = 1, 2, 3$ and so true for all positiveE1		$\Rightarrow 13 = 3^{\circ} = 2q$ $\Rightarrow q = -2$	A1 [3]	c.a.o.	
6(ii) When $n = 1$, $\frac{13 \times 7^{6} + 1}{2} = 7$, so true for $n = 1$ Assume true for $n = k$ $a_{k} = \frac{13 \times 7^{k-1} + 1}{2}$ $\Rightarrow a_{k+1} = 7 \times \frac{13 \times 7^{k-1} + 1}{2} - 3$ $= \frac{13 \times 7^{k} + 7}{2} - 3$ $= \frac{13 \times 7^{k} + 7 - 6}{2}$ $= \frac{13 \times 7^{k} + 1}{2}$ But this is the given result with $k + 1$ replacing k. Therefore if it is true for k it is true for $k = 1, 2, 3$ and so true for all positive	6(i)	$a_2 = 7 \times 7 - 3 = 46$ $a_3 = 7 \times 46 - 3 = 319$	M1 A1 [2]	Use of inductive definition c.a.o.	
Assume true for $n = k$ $a_k = \frac{13 \times 7^{k-1} + 1}{2}$ $\Rightarrow a_{k+1} = 7 \times \frac{13 \times 7^{k-1} + 1}{2} - 3$ $= \frac{13 \times 7^k + 7}{2} - 3$ $= \frac{13 \times 7^k + 7 - 6}{2}$ $= \frac{13 \times 7^k + 1}{2}$ But this is the given result with $k + 1$ replacing k. Therefore if it is true for k it is true for $k = 1, 2, 3$ and so true for all positive E_1 Assuming true for k Attempt to use $a_{k+1} = 7a_k - 3$ Attempt to use $a_{k+1} = 7a_k - 3$ A_1 Correct simplification E_1 Dependent on A1 and previous E_1 Dependent on B1 and previous	6(ii)	When <i>n</i> = 1, $\frac{13 \times 7^0 + 1}{2} = 7$, so true for <i>n</i> = 1	B1	Correct use of part (i) (may be implied)	
$\Rightarrow a_{k+1} = 7 \times \frac{13 \times 7^{k-1} + 1}{2} - 3$ $= \frac{13 \times 7^{k} + 7}{2} - 3$ $= \frac{13 \times 7^{k} + 7 - 6}{2}$ $= \frac{13 \times 7^{k} + 1}{2}$ But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is true for $k = 1, 2, 3$ and so true for all positive		Assume true for $n = k$ $a_k = \frac{13 \times 7^{k-1} + 1}{2}$	E1	Assuming true for <i>k</i>	
$=\frac{13 \times 7^{k} + 7 - 6}{2}$ $=\frac{13 \times 7^{k} + 7 - 6}{2}$ $=\frac{13 \times 7^{k} + 1}{2}$ But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is true for $k = 1, 2, 3$ and so true for all positive $E1$ Dependent on B1 and previous		$\Rightarrow a_{k+1} = 7 \times \frac{13 \times 7^{k-1} + 1}{2} - 3$	M1	Attempt to use $a_{k+1} = 7a_k - 3$	
$\begin{bmatrix} 2\\ =\frac{13\times7^{k}+1}{2} \end{bmatrix}$ But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is true for $k = 1, 2, 3$ and so true for all positive $\begin{bmatrix} 2\\ 1\\ \end{bmatrix}$		$= \frac{13 \times 7^{k} + 7}{2} - 3$ $= \frac{13 \times 7^{k} + 7 - 6}{4}$			
But this is the given result with $k + 1$ replacing k. Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is true for $k = 1, 2, 3$ and so true for all positive		$=\frac{13\times7^{k}+1}{2}$	A1	Correct simplification	
true for $k = 1, 2, 3$ and so true for all positive $\begin{bmatrix} E_1 \\ F_2 \end{bmatrix}$ Dependent on B1 and previous		But this is the given result with $k + 1$ replacing k. Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$ it is	E1	Dependent on A1 and previous E1	
integers.		true for $k = 1, 2, 3$ and so true for all positive integers.	E1 [6]	Dependent on B1 and previous E1	

			mm	12
4755	Mark Scher	ne	January 20	the clo
9(i)	(-3, -3)	B1 [1]		oud.com
9(ii)	(x, x)	B1 B1 [2]		
9(iii)	$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$	B3 [3]	Minus 1 each error to min of 0	
9(iv)	Rotation through $\frac{\pi}{2}$ anticlockwise about the origin	B1 B1 [2]	Rotation and angle (accept 90°) Centre and sense	
9(v)	$ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} $	M1 A1	Attempt to multiply using their T in correct order c.a.o.	
		[2]		
9(vi)	$ \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ x \end{pmatrix} $	M1 A1(ft)	May be implied	
	So (- <i>x</i> , <i>x</i>) Line <i>y</i> = - <i>x</i>	A1	c.a.o. from correct matrix	
		[3]		J

4756	Mark Sche	eme	January 20.	My Asins
	4756 (FP2) Further Methods f	or Advance	ed Mathematics	SUA.CO.
1(a)		M1	For $\int (1-\cos 2\theta)^2 d\theta$	
	Area is $\int_{0}^{\pi} \frac{1}{2} a^{2} (1 - \cos 2\theta)^{2} d\theta$	A1	Correct integral expression including limits (may be implied by later work)	
	$= \int_0^{\frac{1}{2}} a^2 \left(1 - 2\cos 2\theta + \frac{1}{2}(1 + \cos 4\theta)\right) \mathrm{d}\theta$	B1	For $\cos^2 2\theta = \frac{1}{2}(1 + \cos 4\theta)$	
	$= \frac{1}{2} a^{2} \left[\frac{3}{2} \theta - \sin 2\theta + \frac{1}{8} \sin 4\theta \right]_{0}^{\pi}$ $= \frac{3}{4} \pi a^{2}$	B1B1B1 ft A1 7	Integrating $a + b\cos 2\theta + c\cos 4\theta$ [Max B2 if answer incorrect and no mark has previously been lost]	
(b)(i)		M1	Applying $\frac{d}{du} \arctan u = \frac{1}{1 + u^2}$ or $\frac{dy}{dx} = \frac{1}{\sec^2 y}$	
	$f'(x) = \frac{1}{1 + (\sqrt{3} + x)^2}$ $f''(x) = \frac{-2(\sqrt{3} + x)}{\left(1 + (\sqrt{3} + x)^2\right)^2}$	A1 M1 A1 4	Applying chain (or quotient) rule	
(ii)	$f(0) = \frac{1}{3}\pi$	B1	Stated; or appearing in series Accept 1.05	
	$f'(0) = \frac{1}{4}, f''(0) = -\frac{1}{8}\sqrt{3}$	M1	Evaluating $f'(0)$ or $f''(0)$	
	$\arctan(\sqrt{3} + x) = \frac{1}{3}\pi + \frac{1}{4}x - \frac{1}{16}\sqrt{3}x^2 + \dots$	A1A1 ft 4	For $\frac{1}{4}x$ and $-\frac{1}{16}\sqrt{3}x^2$ ft provided coefficients are non-zero	
(iii)	$\int_{-h}^{h} \left(\frac{1}{3}\pi x + \frac{1}{4}x^2 - \frac{1}{16}\sqrt{3}x^3 +\right) dx$ $= \left[\frac{1}{6}\pi x^2 + \frac{1}{12}x^3 - \frac{1}{64}\sqrt{3}x^4 +\right]_{-h}^{h}$ $\approx \left(\frac{1}{6}\pi h^2 + \frac{1}{12}h^3 - \frac{1}{64}\sqrt{3}h^4\right)$	M1 A1 ft	Integrating (award if <i>x</i> is missed) for $\frac{1}{12}x^3$	
	$-\left(\frac{1}{6}\pi h^{2} - \frac{1}{12}h^{3} - \frac{1}{64}\sqrt{3}h^{4}\right)$ $= \frac{1}{6}h^{3}$	A1 ag 3	Allow ft from $a + \frac{1}{4}x + cx^2$ provided that $a \neq 0$ Condone a proof which neglects h^4	

4756 (FP2) Further Methods for Advanced Mathematics

4756	Mark Sche	eme		January 20	MU ASERS
					scioud.
2(a)	4th roots of $16j = 16e^{\frac{1}{2}\pi j}$ are $re^{j\theta}$ where			1	-OM
	r = 2 $\theta = \frac{1}{8}\pi$	B1 B1		<i>Accept</i> 16 ⁴	
	$\theta = \frac{\pi}{8} + \frac{2k\pi}{4}$	M1		Implied by at least two correct (ft) further values	
	$\theta = -\frac{1}{8}\pi$, $-\frac{3}{8}\pi$, $\frac{3}{8}\pi$	A1		or stating $k = -2, -1, (0), 1$	
		M1 A1	6	Points at vertices of a square centre O or 3 correct points (ft) or 1 point in each quadrant	
(b)(i)	$(1-2e^{j\theta})(1-2e^{-j\theta}) = 1-2e^{j\theta} - 2e^{-j\theta} + 4$ = 5 - 2(e^{j\theta} + e^{-j\theta}) = 5 - 4\cos\theta	M1 A1 A1 ag		For $e^{j\theta}e^{-j\theta} = 1$	
			3		-
	OR $(1 - 2\cos\theta - 2j\sin\theta)(1 - 2\cos\theta + 2j\sin\theta)$ M $= (1 - 2\cos\theta)^2 + 4\sin^2\theta$ A $= 1 - 4\cos\theta + 4(\cos^2\theta + \sin^2\theta)$	1			
(ii)	$= 5 - 4\cos\theta \qquad \qquad$	I M1		Obtaining a geometric series	_
	$= \frac{2 e^{j\theta} \left(1 - (2 e^{j\theta})^n\right)}{1 - 2 e^{j\theta}}$	M1 A1		Summing (M0 for sum to infinity)	
	$= \frac{2 e^{j\theta} (1 - 2^{n} e^{nj\theta})(1 - 2 e^{-j\theta})}{(1 - 2 e^{j\theta})(1 - 2 e^{-j\theta})}$	M1			
	$=\frac{2e^{j\theta}-4-2^{n+1}e^{(n+1)j\theta}+2^{n+2}e^{nj\theta}}{5-4\cos\theta}$	A2			
	$C = \frac{2\cos\theta - 4 - 2^{n+1}\cos(n+1)\theta + 2^{n+2}\cos n\theta}{5 - 4\cos\theta}$	M1 A1 ag		Give A1 for two correct terms in numerator Equating real (or imaginary)	
	$S = \frac{2\sin\theta - 2^{n+1}\sin(n+1)\theta + 2^{n+2}\sin n\theta}{5 - 4\cos\theta}$	A1	9	parts	

4756	Mark Schei	me	January 20	My Asus MINSCIOUCI
3 (i)	Characteristic equation is $(7 - \lambda)(-1 - \lambda) + 12 = 0$ $\lambda^2 - 6\lambda + 5 = 0$	M1		*.com
	$\lambda = 1, 5$ When $\lambda = 1$, $\begin{pmatrix} 7 & 3 \\ -4 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$	A1A1 M1	or $\begin{pmatrix} 6 & 3 \\ -4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	
	7x + 3y = x -4x - y = y	M1	<i>can be awarded for either eigenvalue</i> Equation relating <i>x</i> and <i>y</i>	
	$y = -2x$, eigenvector is $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ When $\lambda = 5$, $\begin{pmatrix} 7 & 3 \\ -4 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 5 \begin{pmatrix} x \\ y \end{pmatrix}$	A1	or any (non-zero) multiple	
	7x + 3y = 5x -4x - y = 5y (3)	M1		
	$y = -\frac{2}{3}x$, eigenvector is $\begin{pmatrix} 2\\ -2 \end{pmatrix}$	A1 8	SR $(\mathbf{M} - \lambda \mathbf{I})\mathbf{x} = \lambda \mathbf{x}$ can earn M1A1A1M0M1A0M1A0	
(ii)	$\mathbf{P} = \begin{pmatrix} 1 & 3 \\ -2 & -2 \end{pmatrix}$	B1 ft	B0 if P is singular	
	$\mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$	B1 ft 2	For B2, the order must be consistent	

			www. m
4756	Mark	Scheme	January 20 January 20
(iii)	$\mathbf{M} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$	M1	May be implied
	$\mathbf{M}^n = \mathbf{P} \mathbf{D}^n \mathbf{P}^{-1}$	M1	
	$=\mathbf{P}\begin{pmatrix}1&0\\0&5^n\end{pmatrix}\mathbf{P}^{-1}$	A1 ft	Dependent on M1M1
	$= \begin{pmatrix} 1 & 3 \\ -2 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 5^n \end{pmatrix} \frac{1}{4} \begin{pmatrix} -2 & -3 \\ 2 & 1 \end{pmatrix}$	B1 ft	For \mathbf{P}^{-1}
	$= \begin{pmatrix} 1 & 3 \times 5^{n} \\ -2 & -2 \times 5^{n} \end{pmatrix} \frac{1}{4} \begin{pmatrix} -2 & -3 \\ 2 & 1 \end{pmatrix}$		or $\begin{pmatrix} 1 & 3 \\ -2 & -2 \end{pmatrix} \frac{1}{4} \begin{pmatrix} -2 & -3 \\ 2 \times 5^n & 5^n \end{pmatrix}$
	$=\frac{1}{4}\begin{pmatrix} -2+6\times5^{n} & -3+3\times5^{n} \\ 4-4\times5^{n} & 6-2\times5^{n} \end{pmatrix}$	M1	Obtaining at least one element in a product of three matrices
	$a = -\frac{1}{2} + \frac{3}{2} \times 5^{n}$ $b = -\frac{3}{4} + \frac{3}{4} \times 5^{n}$	A1 ag	
	$c = 1 - 5^n$ $d = \frac{3}{2} - \frac{1}{2} \times 5^n$	A2	Give A1 for one of <i>b, c, d</i> correct
			SR If $\mathbf{M}^n = \mathbf{P}^{-1} \mathbf{D}^n \mathbf{P}$ is used, max marks are M0M1A0B1M1A0A1 (<i>d</i> should be correct)
			<i>SR</i> If their P is singular, max marks are M1M1A1B0M0

4756	Mark Sc	hei	ne		January 20	My athis
4 (i)	$\frac{1}{2}(\mathrm{e}^x + \mathrm{e}^{-x}) = k$		M1		or $\cosh x + \sinh x = e^x$	
	$e^{2x} - 2k e^{x} + 1 = 0$		M1		$\text{or } k \pm \sqrt{k^2 - 1} = e^x$	
	$e^{x} = \frac{2k \pm \sqrt{4k^{2} - 4}}{2} = k \pm \sqrt{k^{2} - 1}$					
	$x = \ln(k + \sqrt{k^2 - 1})$ or $\ln(k - \sqrt{k^2 - 1})$		A1		One value sufficient	
	$(k + \sqrt{k^2 - 1})(k - \sqrt{k^2 - 1}) = k^2 - (k^2 - 1) = 1$		M1		or $\cosh x$ is an even function	
	$\ln(k - \sqrt{k^2 - 1}) = \ln(\frac{1}{k + \sqrt{k^2 - 1}}) = -\ln(k + \sqrt{k^2 - 1})$	-1)			(or equivalent)	
	$x = \pm \ln(k + \sqrt{k^2 - 1})$					
			A1 ag	5		
(ii)			M1		For arcosh or	1
					$\ln(\lambda x + \sqrt{\lambda^2 x^2})$ or any cosh substitution	
			A1		For $\operatorname{arcosh} 2x$ or $2x = \operatorname{cosh} u$ or	
	$\int_{-\infty}^{2} \frac{1}{\sqrt{2}} dx = \left[\frac{1}{2}\operatorname{arcosh} 2x\right]^{2}$				$\ln(2x + \sqrt{4x^2 - 1})$ or $\ln(x + \sqrt{x^2 - \frac{1}{4}})$	
	$J_1 \sqrt{4x^2-1} \square ^2 \square ^1$		AI		For $\frac{1}{2}$ or $\int \frac{1}{2} du$	
	$=\frac{1}{2}(\operatorname{arcosh} 4 - \operatorname{arcosh} 2)$		M1		Exact numerical logarithmic	
	$= \frac{1}{2} \left(\ln(4 + \sqrt{15}) - \ln(2 + \sqrt{3}) \right)$		A1		form	
(iii)	$6 \sinh x - 2 \sinh x \cosh x = 0$		M1	5		-
(111)	$\cosh x = 2 \sinh x \cosh x = 0$ $\cosh x = 3$ (or $\sinh x = 0$)		M1		Obtaining a value for cosh x	
	x = 0		B1			
	$x = \pm \ln(3 + \sqrt{8})$		A1	4	Of $x = \ln(3 \pm \sqrt{8})$	
	$OR \ e^{4x} - 6 e^{3x} + 6 e^{x} - 1 = 0$					
	$(e^{2x} - 1)(e^{2x} - 6e^{x} + 1) = 0$	M2 R1			Or $(e^x - e^{-x})(e^x + e^{-x} - 6) = 0$	
	$x = 0$ $x = \ln(3 \pm \sqrt{8})$	A1				
(iv)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cosh x - 2\cosh 2x$		D1			
	dx If $\frac{dy}{dy} = 5$ then $6 \cosh x = 2(2 \cosh^2 x = 1) = 5$				Using $\cosh 2x = 2 \cosh^2 x = 1$	
	$\frac{1}{dx} = -5 \text{ men } 0 \cos(x - 2(2\cos(x - 1))) = 5$		IVI1		$\int \cos(y) \cos(2x - 2\cos(x - 1))$	
	$4 \cos^{-1} x - 6 \cos x + 3 = 0$ Discriminant $D = 6^2 - 4 \times 4 \times 3 = -12$		NJ 4		Considering <i>D</i> , or completing	
	Since $D < 0$ there are no solutions				square, or considering turning	
			A1	4	Pour	
			L		L	L

Mark Scheme

Μ	ark Scheme	January 20	MA Mains
OR Gradient $g = 6 \cosh x - 2 \cosh 2x$	B1		10UU.
$g = 0 \sinh x - 4 \sinh 2x - 2 \sinh x(3 - 4)$ $= 0 \text{ when } x = 0 \text{ (only)}$	M1		
$g'' = 6\cosh x - 8\cosh 2x = -2 \text{ when}$	x = 0 M1		
Max value $g = 4$ when $x = 0$			
So <i>g</i> is never equal to 5	A1	Final A1 requires a complete proof showing this is the only turning point	

4756	Mark Sche	me	January 20. Januar
5 (i)	$\lambda = -1$ $\lambda = 0$ $\lambda = 1$	B1B1B1	
	cusp loop	B1B1	Two different features (cusp,loop, asymptote) correctlyidentified
(ii)	<i>x</i> = 1	B1	1
(iii)	Intersects itself when $y = 0$	M1	
	$t = (\pm)\sqrt{\lambda}$	A1	
	$\left(\frac{\lambda}{1+\lambda}, 0 \right)$	A1	3
(iv)	$\frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2 - \lambda = 0$	M1	
	$t = \pm \sqrt{\frac{\lambda}{3}}$ $x = \frac{\frac{\lambda}{3}}{1 + \frac{\lambda}{3}} = \frac{\lambda}{3 + \lambda}$ $y = \pm \left(\left(\frac{\lambda}{3}\right)^{\frac{3}{2}} - \lambda \left(\frac{\lambda}{3}\right)^{\frac{1}{2}} \right)$ $= \pm \lambda^{\frac{3}{2}} \left(\frac{1}{3\sqrt{3}} - \frac{1}{\sqrt{3}} \right) = \pm \lambda^{\frac{3}{2}} \left(-\frac{2}{3\sqrt{3}} \right)$ $= \pm \sqrt{\frac{4\lambda^{3}}{2\pi}}$	A1 ag M1	One value sufficient
	V 27	A1 ag	4
(v)	From asymptote, $a = 8$	B1	
	From intersection point, $\frac{dr}{1+\lambda} = 2$	M1	
	$\lambda = \frac{1}{3}$	A1	
	From maximum point, $b\sqrt{\frac{4\lambda^3}{27}} = 2$ b = 27	M1 A1	5

$\frac{4758}{2}$ $\frac{4758}{2}$ $\frac{4758}{2}$ $\frac{758}{2}$ \frac				m	m. p
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4758	Ма	ark Scheme	January	20 mai
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4758	Differential Equat	ions	
$a = -1 \text{ (repeated)}$ $CF \ y = (A + Bt)e^{-t}$ $PI \ y = a$ $In DE \Rightarrow y = 2$ $y = 2 + (A + Bt)e^{-t}$ $y = 2 - (A + Bt)e^{-t}$ $f = 1$ $F $	(i ,	$\alpha^2 + 2\alpha + 1 = 0$	M1	Auxiliary equation	
CF $y = (A + Bt)e^{-t}$ Pl $y = a$ in DE $\Rightarrow y = 2$ $y = 2 + (A + Bt)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = 2 + A \Rightarrow A = -2$ $y = 2 + (A + Bt)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = 2 + A \Rightarrow A = -2$ $y = (B - A - Bt)e^{-t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = B - A \Rightarrow B = -2$ $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on \dot{y} $y = 2 - (2 + 2t)e^{-t}$ M1 Differentiate (product rule) HS Pl $y = bt^2 e^{-t}$ $y = (2bt - bt^2)e^{-t}, \ddot{y} = (2b - 4bt + bt^2)e^{-t}$ in DE $\Rightarrow (2b - 4bt + bt^2 + 2(2bt - bt^2) + bt^2)e^{-t} = e^{-t}$ $y = (C + Dt + \frac{1}{2}t^2)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C$ $y = (D + t - C - Dt - \frac{1}{2}t^2)e^{-t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^2 e^{-t}$ M1 Solve $\dot{y} = 0$ M1 Maximum value of y B1 Maximum at their	Ċ	$\alpha = -1$ (repeated)	A1		
PI $y = a$ in DE $\Rightarrow y = 2$ $y = 2 + (A + Bt)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = 2 + A \Rightarrow A = -2$ $y = (B - A - Bt)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = B - A \Rightarrow B = -2$ $y = 2 - (2 + 2t)e^{-t}$ In Definition on y $y = 2 - (2 + 2t)e^{-t}$ In DE $\Rightarrow (2b - 4bt + bt^2 + 2(2bt - bt^2) + bt^2)e^{-t} = e^{-t}$ $y = (C + Dt + \frac{1}{2}t^2)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C$ $y = (D + t - C - Dt - \frac{1}{2}t^2)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C$ $y = (D + t - C - Dt - \frac{1}{2}t^2)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C - C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C - C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C - C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C - C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 e^{-t}$ M1 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M2 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M3 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M4 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M5 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M6 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M7 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M8 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M9 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M1 Solve $\dot{y} = 0$ Maximum at $t = 2, y = 2e^{-2}$ M1 Maximum value of y B1 Starts at origin B1 Maximum at their value of y B1 $y > 0$ B1 Starts at origin B1 Maximum at their value of y B1 $y > 0$	C	$CF \ y = (A + Bt) \mathrm{e}^{-t}$	F1	CF for their roots	
in DE $\Rightarrow y = 2$ $y = 2 + (A + Bt)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = 2 + A \Rightarrow A = -2$ $y = (B - A - Bt)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = B - A \Rightarrow B = -2$ $y = 2 - (2 + 2t)e^{-t}$ M1 Differentiate (product rule) $t = 0, y = 0 \Rightarrow 0 = B - A \Rightarrow B = -2$ $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Differentiate twice and substituted in LHS Pl $y = bt^2 e^{-t}$, $y = (2b - 4bt + bt^2)e^{-t}$ in DE $\Rightarrow (2b - 4bt + bt^2 + 2(2bt - bt^2) + bt^2)e^{-t} = e^{-t}$ $\Rightarrow b = \frac{1}{2}$ $y = (C + Dt + \frac{1}{2}t^2)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C$ $y = (2 + t - C - Dt - \frac{1}{2}t^2)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 e^{-t}$ M1 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M2 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M3 Condition on y $y = (D + t - C - Dt - \frac{1}{2}t^2)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 e^{-t}$ M2 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M3 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M4 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M5 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M4 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ M5 Condition on y $y = \frac{1}{2}t^2 e^{-t}$ y = 0 M5 Condition on y y = 0 y	F	Pl $y = a$	B1	Constant PI	
$y = 2 + (A + Bt)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = 2 + A \Rightarrow A = -2$ $y = (B - A - Bt)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = B - A \Rightarrow B = -2$ $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Differentiate twice and substituted in LHS PI y = bt ² e^{-t} ge^{-t} $y = (2bt - bt2)e^{-t}, y = (2b - 4bt + bt2)e^{-t} = e^{-t}$ $\Rightarrow b = \frac{1}{2}$ $y = (C + Dt + \frac{1}{2}t^{2})e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C$ $y = (2 - t - C - Dt - \frac{1}{2}t^{2})e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^{2} > 0$ M1 Condition on y $y = \frac{1}{2}t^{2} e^{-t}$ M1 Differentiate twice and substitute Their PI + CF (with two arbitrary constants) M1 Condition on y M2 = (D + t - C - Dt - \frac{1}{2}t^{2})e^{-t} M1 Differentiate twice and substitute M1 Condition on y $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on y $y = \frac{1}{2}t^{2} > 0$ M1 Condition on y $y = \frac{1}{2}t^{2} > 0$ M2 Condition on y $y = \frac{1}{2}t^{2} > 0$ M2 Condition on y $y = \frac{1}{2}t^{2} > 0$ M3 Condition on y $y = \frac{1}{2}t^{2} > 0$ M4 Condition on y $y = \frac{1}{2}t^{2} > 0$ M5 Condition on y $y = \frac{1}{2}t^{2} > 0$ M4 Condition on y $y = \frac{1}{2}t^{2} > 0$ M5 Condition on y $y = \frac{1}{2}t^{2} > 0$ M6 Condition on y $y = \frac{1}{2}t^{2} = 0$ M7 Condition on y $y = \frac{1}{2}t^{2} = 0$ M8 Condition on y $y = \frac{1}{2}t^{2} = 0$ M8 Condition on y $y = \frac{1}{2}t^{2} = 0$ M8 Condition on y $y = \frac{1}{2}t^{2} = 0$ M9 Condition on y $y = \frac{1}{2}t^{2} = 0$ M9 Condition on y $y = \frac{1}{2}t^{2} = 0$ M9 Condition on y $y = \frac{1}{2}t^{2} = 0$ M1 Condition on y $y = \frac{1}{2}t^{2$	iı	n DE \Rightarrow y = 2	B1	PI correct	
$t = 0, y = 0 \Rightarrow 0 = 2 + A \Rightarrow A = -2$ $y = (B - A - Bt)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = B - A \Rightarrow B = -2$ $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on y $y = (2 + Dt + 2t)e^{-t}$ M1 Differentiate twice and substitute $y = (2 + Dt + 2t)e^{-t}, y = (2b - 4bt + bt^{2})e^{-t}$ M1 Differentiate twice and substitute $y = (2 + Dt + 2t)e^{-t}, y = (2b - 4bt + bt^{2})e^{-t}$ M1 Differentiate twice and substitute $y = (C + Dt + 2t)e^{-t}, y = (2b - 4bt + bt^{2})e^{-t}$ M1 Pl correct $y = (C + Dt + 2t)e^{-t}, y = (2b - 4bt + bt^{2})e^{-t}$ M1 Condition on y $y = (D + t - C - Dt - 2t)e^{-t}, y = (2t + 2t)e^{-t}$ M1 Condition on y $y = (D + t - C - Dt - 2t)e^{-t}, y = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = (t - 2t)e^{-t}, y = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = (t - 2t)e^{-t}, y = 0 \Rightarrow 0 \Rightarrow t - 2t)e^{-t}, z = 0 \Rightarrow t = 0 \text{ or } 2$ M2 Condition on y $y = (t - 2t)e^{-t}, y = 2e^{-2}$ M1 Condition on y $y = 2t^{2}e^{-t}$ M2 Differentiate twice and substitute $y = (t - 2t)e^{-t}, y = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = (t - 2t)e^{-t}, y = 0 \Rightarrow 0 \Rightarrow t - 2t = 0 \Rightarrow t = 0 \text{ or } 2$ M2 Maximum at $t = 2, y = 2e^{-2}$ M3 Condition on y $y = 2t^{2}e^{-t}$ M4 Condition on y $y = 2t^{2}e^{-t}$ M5 Differentiate twice and substitute $y = 0$ M4 Condition on y $y = 2t^{2}e^{-t}$ M5 Condition on y $y = 2t^{2}e^{-t}$ M6 Condition on y $y = 2t^{2}e^{-t}$ M6 Condition on y $y = 2t^{2}e^{-t}$ M7 Condition on y $y = 2t^{2}e^{-t}$ M8 Condition on y $y = 2t^{2}e^{-t}$ M9 Condition		$y = 2 + (A + Bt)e^{-t}$	F1	Their PI + CF (with two	
$\dot{y} = (B - A - Bt)e^{-t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = B - A \Rightarrow B = -2$ $y = 2 - (2 + 2t)e^{-t}$ M1 Differentiate (product rule) M1 Condition on \dot{y} M1 Differentiate (uncertain the product rule) M1 Condition on \dot{y} M1 Differentiate twice and substituted in LHS PI $y = bt^2 e^{-t}$ B1 $\dot{y} = (2bt - bt^2)e^{-t}, \ddot{y} = (2b - 4bt + bt^2)e^{-t}$ B1 $\dot{y} = (2bt - bt^2)e^{-t}, \ddot{y} = (2b - 4bt + bt^2)e^{-t}$ B1 $\dot{y} = (2bt - bt^2)e^{-t}, \ddot{y} = (2b - 4bt + bt^2)e^{-t}$ B1 $\dot{y} = (2b - 4bt + bt^2 + 2(2bt - bt^2) + bt^2)e^{-t} = e^{-t}$ M1 Differentiate twice and substitute $\Rightarrow b = \frac{1}{2}$ M1 PI correct $y = (C + Dt + \frac{1}{2}t^2)e^{-t}$ F1 Their PI + CF (with two arbitrary constants) M1 Condition on \dot{y} $\dot{y} = (D + t - C - Dt - \frac{1}{2}t^2)e^{-t}$ F1 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M1 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M2 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M3 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M4 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2 + 0$ M5 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M5 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M6 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M1 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M2 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M3 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M4 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M5 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M6 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M6 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M7 Condition on \dot{y} $\dot{y} = \frac{1}{2}t^2e^{-t}$ M8 Condition $\dot{y} = 0$ $\dot{y} = \frac{1}{2}t^2e^{-t}$ M8 Condition $\dot{y} = 0$ $\dot{y} = \frac{1}{2}t^2e^{-t}$	t	$t = 0, y = 0 \Longrightarrow 0 = 2 + A \Longrightarrow A = -2$	M1	Condition on y	
$t = 0, \dot{y} = 0 \Rightarrow 0 = B - A \Rightarrow B = -2$ $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on \dot{y} $y = 2 - (2 + 2t)e^{-t}$ M1 Condition on \dot{y} M2 $\frac{1}{2}t^2 e^{-t}$ M2 $\frac{1}{2}t^2 e^{-t}$ M3 Condition on \dot{y} M4 $\frac{1}{2}t^2 e^{-t}$ M5 $\frac{1}{2}t^2 e^{-t}$ M6 $\frac{1}{2}t^2 e^{-t}$ M7 $\frac{1}{2}t^2 e^{-t}$ M8 $\frac{1}{2}t^2 e^{-t}$ M8 $\frac{1}{2}t^2 e^{-t}$ M9 $\frac{1}{2}t^2 e^{-t}$ M9 $\frac{1}{2}t^2 e^{-t}$ M1 $\frac{1}{2}t^2 e^{-t}$ M	-	$\dot{y} = (B - A - Bt)e^{-t}$	M1	Differentiate (product rule)	
$y = 2 - (2 + 2t)e^{-t}$ A1 Both terms in CF hence will give zero if substituted in LHS PI $y = bt^2 e^{-t}$ B1 $y = (2bt - bt^2)e^{-t}, y = (2b - 4bt + bt^2)e^{-t}$ B1 $y = (2bt - bt^2)e^{-t}, y = (2b - 4bt + bt^2)e^{-t}$ M1 Differentiate twice and substitute $\Rightarrow b = \frac{1}{2}$ A1 PI correct $y = (C + Dt + \frac{1}{2}t^2)e^{-t}$ F1 Their PI + CF (with two arbitrary constants) t = 0, y = 0 \Rightarrow 0 = C M1 Condition on y $y = (D + t - C - Dt - \frac{1}{2}t^2)e^{-t}$ Their PI + CF (with two arbitrary constants) t = 0, y = 0 \Rightarrow 0 = D - C \Rightarrow D = 0 M1 Condition on y $y = \frac{1}{2}t^2e^{-t}$ A1 M1 Solve $\dot{y} = 0$ Maximum at $t = 2, y = 2e^{-2}$ A1 Maximum value of y B1 Starts at origin B1 Maximum at their value of y B1 $y > 0$ 6	t	$\dot{y} = 0, \dot{y} = 0 \Longrightarrow 0 = B - A \Longrightarrow B = -2$	M1	Condition on \dot{y}	
10 Both terms in CF hence will give zero if substituted in LHS PI $y = bt^2 e^{-t}$ in DE $\Rightarrow (2b - 4bt + bt^2 + 2(2bt - bt^2) + bt^2) e^{-t} = e^{-t}$ $\Rightarrow b = \frac{1}{2}$ $y = (C + Dt + \frac{1}{2}t^2) e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C$ $y = (D + t - C - Dt - \frac{1}{2}t^2) e^{-t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^2 e^{-t}$ M2 Condition on \dot{y} $y = \frac{1}{2}t^2 e^{-t}$ M3 Differentiate twice and substitute A1 Pl correct F1 Their Pl + CF (with two arbitrary constants) M1 Condition on y $y = (D + t - C - Dt - \frac{1}{2}t^2) e^{-t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^2 e^{-t}$ M2 Solve $\dot{y} = 0$ Maximum at $t = 2, y = 2e^{-2}$ A1 Maximum value of y B1 Starts at origin B1 Maximum at their value of y B1 $y > 0$ B1 $y > 0$	-	$y = 2 - (2 + 2t)e^{-t}$	A1		
Both terms in CF hence will give zero if substituted in LHS $PI \ y = bt^2 e^{-t}$ $B1$ $\dot{y} = (2bt - bt^2) e^{-t}, \dot{y} = (2b - 4bt + bt^2) e^{-t}$ $B1$ $\dot{y} = (2bt - 4bt + bt^2 + 2(2bt - bt^2) + bt^2) e^{-t} = e^{-t}$ $M1$ Differentiate twice and $\Rightarrow b = \frac{1}{2}$ $A1$ $PI \ correct$ $y = (C + Dt + \frac{1}{2}t^2) e^{-t}$ $F1$ Their $PI + CF$ (with two $arbitrary \ constants)$ $M1$ Condition on y $\dot{y} = (D + t - C - Dt - \frac{1}{2}t^2) e^{-t}$ $A1$ $t = 0, \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $M1$ Condition on \dot{y} $y = \frac{1}{2}t^2 e^{-t}$ $A1$ $y = \frac{1}{2}t^2 e^{-t}$ $B1$ $\dot{y} = (t - \frac{1}{2}t^2) e^{-t}$ so $\dot{y} = 0 \Leftrightarrow t - \frac{1}{2}t^2 = 0 \Leftrightarrow t = 0 \text{ or } 2$ $M1$ Solve $\dot{y} = 0$ Maximum at $t = 2, y = 2e^{-2}$ $A1$ Maximum value of y B1 Starts at origin B1 Maximum at their value of $yB1$ $y > 0B1$ $y > 0$					10
PI $y = bt^2 e^{-t}$ PI $y = bt^2 e^{-t}$, $\ddot{y} = (2b - 4bt + bt^2) e^{-t}$ in DE $\Rightarrow (2b - 4bt + bt^2 + 2(2bt - bt^2) + bt^2) e^{-t} = e^{-t}$ $\Rightarrow b = \frac{1}{2}$ $y = (C + Dt + \frac{1}{2}t^2) e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C$ $y = (D + t - C - Dt - \frac{1}{2}t^2) e^{-t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 e^{-t}$ P) $t > 0 \Rightarrow \frac{1}{2}t^2 > 0$ and $e^{-t} > 0 \Rightarrow y > 0$ $\dot{y} = (t - \frac{1}{2}t^2) e^{-t}$ so $\dot{y} = 0 \Leftrightarrow t - \frac{1}{2}t^2 = 0 \Leftrightarrow t = 0$ or 2 Maximum at $t = 2, y = 2e^{-2}$ Maximum at $t = 2, y = 2e^{-2}$ Maximum at the invalue of y B1 Maximum) E	Both terms in CF hence will give zero if su	Ibstituted in E1		
$\dot{y} = (2bt - bt^{2})e^{-t}, \\ \ddot{y} = (2b - 4bt + bt^{2} + 2(2bt - bt^{2}) + bt^{2})e^{-t}$ in DE $\Rightarrow (2b - 4bt + bt^{2} + 2(2bt - bt^{2}) + bt^{2})e^{-t} = e^{-t}$ $\Rightarrow b = \frac{1}{2}$ $y = (C + Dt + \frac{1}{2}t^{2})e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C$ $\dot{y} = (D + t - C - Dt - \frac{1}{2}t^{2})e^{-t}$ $t = 0, \\ \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M2 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M3 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M4 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M5 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M6 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M7 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M8 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M8 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M9 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M1 Solve $\dot{y} = 0$ Maximum at $t = 2, y = 2e^{-2}$ M1 Maximum at their value of y W1 Starts at origin W2 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition \dot{y} $\dot{y} = \frac{1}{2}t^{2}e^{-t}$ M1 Condition $\dot{y} = 0$ y	F	$P = bt^2 e^{-t}$	B1		
in DE $\Rightarrow (2b-4bt+bt^2+2(2bt-bt^2)+bt^2)e^{-t} = e^{-t}$ $\Rightarrow b = \frac{1}{2}$ $y = (C+Dt+\frac{1}{2}t^2)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C$ $y = (D+t-C-Dt-\frac{1}{2}t^2)e^{-t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = D-C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 = 0 \Rightarrow 0 = D-C \Rightarrow D = 0$ $y = \frac{1}{2}t^2 > 0 \text{ and } e^{-t} > 0 \Rightarrow y > 0$ $\dot{y} = (t-\frac{1}{2}t^2)e^{-t} \text{ so } \dot{y} = 0 \Rightarrow t-\frac{1}{2}t^2 = 0 \Rightarrow t = 0 \text{ or } 2$ Maximum at $t = 2, y = 2e^{-2}$ Maximum at the invalue of y B1 Starts at origin B1 Maximum at the invalue of y B1 $y > 0$ 6		$\dot{v} = (2bt - bt^2)e^{-t}$, $\ddot{v} = (2b - 4bt + bt^2)e^{-t}$			
$\Rightarrow b = \frac{1}{2}$ $y = (C + Dt + \frac{1}{2}t^{2})e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C$ $y = (D + t - C - Dt - \frac{1}{2}t^{2})e^{-t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2} = 0$ $\dot{y} = (t - \frac{1}{2}t^{2})e^{-t}$ Solve $\dot{y} = 0$ M1 Solve $\dot{y} = 0$ M2 Maximum at $t = 2, y = 2e^{-2}$ M3 Maximum at $t = 2, y = 2e^{-2}$ M4 Maximum at their value of y $y = 1 y > 0$ M3 Maximum at the form $y = 0$ $y =$	i	$n DE \Rightarrow \left(2b - 4bt + bt^2 + 2\left(2bt - bt^2\right) + bt^2\right)$	$e^{-t} = e^{-t} \qquad M1$	Differentiate twice and substitute	
$y = \left(C + Dt + \frac{1}{2}t^{2}\right)e^{-t}$ $t = 0, y = 0 \Rightarrow 0 = C$ $y = \left(D + t - C - Dt - \frac{1}{2}t^{2}\right)e^{-t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2} = 0$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2} = 0$ M1 Solve $\dot{y} = 0$ M1 Solve $\dot{y} = 0$ M2 Maximum at $t = 2, y = 2e^{-2}$ M2 Maximum at $t = 2, y = 2e^{-2}$ M2 Maximum at the ir value of y $y = \frac{1}{2}t^{2} = 0$ $y = 0$ M3 Maximum at the ir value of y $y = \frac{1}{2}t^{2} = 0$ $y = 0$	=	$\Rightarrow b = \frac{1}{2}$	A1	PI correct	
$t = 0, y = 0 \Rightarrow 0 = C$ $y = (D + t - C - Dt - \frac{1}{2}t^{2})e^{-t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2} = 0$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2} = 0$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2} = 0$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2} = 0$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2} = 0$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2} = 0$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2} = 0$ M1 Solve $\dot{y} = 0$ M1 Solve $\dot{y} = 0$ M1 Solve $\dot{y} = 0$ M2 Maximum at $t = 2, y = 2e^{-2}$ M1 Maximum value of y M1 Solve $\dot{y} = 0$ M2 Maximum at their value of y M2 Solve $\dot{y} = 0$ M3 Solve $\dot{y} = 0$ M4 Maximum value of y M3 Solve $\dot{y} = 0$ M4 Maximum value of y M3 Solve $\dot{y} = 0$ M4 Maximum value of y M5 Solve $\dot{y} = 0$ M5 Solve $\dot{y} = 0$ M6 M4 Maximum value of y M5 Solve $\dot{y} = 0$ M5 Solve $\dot{y} = 0$ M6 M4 Maximum value of y M5 Solve $\dot{y} = 0$ M5 Solve $\dot{y} = 0$ M5 Solve $\dot{y} = 0$ M6 Solve $\dot{y} = 0$ M7 Solve $\dot{y} = 0$ M7 Solve $\dot{y} = 0$ M8 Solve $\dot{y} =$		$v = (C + Dt + \frac{1}{2}t^2)e^{-t}$	F1	Their PI + CF (with two	
$\dot{y} = (0, \dot{y} = 0) \Rightarrow 0 = 0$ $\dot{y} = (D + t - C - Dt - \frac{1}{2}t^{2})e^{-t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} $y = \frac{1}{2}t^{2} > 0 \text{ and } e^{-t} > 0 \Rightarrow y > 0$ $\dot{y} = (t - \frac{1}{2}t^{2})e^{-t} \text{ so } \dot{y} = 0 \Leftrightarrow t - \frac{1}{2}t^{2} = 0 \Leftrightarrow t = 0 \text{ or } 2$ Maximum at $t = 2, y = 2e^{-2}$ Maximum at $t = 2, y = 2e^{-2}$ M1 Solve $\dot{y} = 0$ M1 Maximum value of y B1 Starts at origin B1 Maximum at their value of y B1 $y > 0$ M1 M1 Condition on \dot{y} B1 $y > 0$ B1	t	$t = 0, v = 0 \implies 0 = C$		arbitrary constants)	
$y = (D + t = C = Dt - \frac{1}{2}t^{-1})e^{t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$ $y = \frac{1}{2}t^{2}e^{-t}$ M1 Condition on \dot{y} A1 $y = \frac{1}{2}t^{2} = 0$ M1 Condition on \dot{y} A1 $y = (t - \frac{1}{2}t^{2})e^{-t} \text{ so } \dot{y} = 0 \Rightarrow t = 0 \text{ or } 2$ M1 Solve $\dot{y} = 0$ Maximum at $t = 2, y = 2e^{-2}$ A1 Maximum value of y B1 Starts at origin B1 Maximum at their value of y B1 $y > 0$ $y = (t - \frac{1}{2}t^{2})e^{-t} = 0$ $y = (t - \frac{1}{2}t^{2})e^{-t} = 0$ $y = (t - \frac{1}{2}t^{2})e^{-t} = 0$ y = 0 y = 0		$\dot{v} = (D + t, C, Dt, \frac{1}{2}t^2)e^{-t}$		Condition on y	
$y = \frac{1}{2}t^{2}e^{-t}$ $y = \frac{1}{2}t^{2}e^{-t}$ $x = \frac{1}{2}t^{2} = 0$ $y = 0$ $y = \frac{1}{2}t^{2} = 0$ $y = 0$ $x = 0 \text{ or } 2$ $y = 0$ $x = 0 \text{ or } 2$ $y = 0$ $x = 0 \text{ or } 2$ $x = 0$ $y = 0$ = 0$ y	-	$y = (D + i - C - Di - \frac{1}{2}i)e^{-i}$	N 44	Condition on	
$y = \frac{1}{2}t^{2} e^{-1} e^{-$	i		M1	Condition on y	
(i) $t > 0 \Rightarrow \frac{1}{2}t^2 > 0$ and $e^{-t} > 0 \Rightarrow y > 0$ $\dot{y} = \left(t - \frac{1}{2}t^2\right)e^{-t}$ so $\dot{y} = 0 \Leftrightarrow t - \frac{1}{2}t^2 = 0 \Leftrightarrow t = 0$ or 2 Maximum at $t = 2, y = 2e^{-2}$ (0.27) (0		$V = \frac{1}{2}l$ e	AI		8
$\dot{y} = \left(t - \frac{1}{2}t^{2}\right)e^{-t} \text{ so } \dot{y} = 0 \Leftrightarrow t - \frac{1}{2}t^{2} = 0 \Leftrightarrow t = 0 \text{ or } 2$ Maximum at $t = 2, y = 2e^{-2}$ M1 Solve $\dot{y} = 0$ A1 Maximum value of y B1 Starts at origin B1 Maximum at their value of y B1 $y > 0$ 6	i) _t	$t > 0 \Rightarrow \frac{1}{2}t^2 > 0$ and $e^{-t} > 0 \Rightarrow y > 0$	E1		0
Maximum at $t = 2, y = 2e^{-2}$ 0.27 y $y = 2e^{-2}$ A1 Maximum value of y B1 Starts at origin B1 Maximum at their value of y B1 $y > 0$ 6	-	$\dot{y} = \left(t - \frac{1}{2}t^2\right)e^{-t}$ so $\dot{y} = 0 \Leftrightarrow t - \frac{1}{2}t^2 = 0 \Leftrightarrow t$	= 0 or 2 M1	Solve $\dot{y} = 0$	
$\begin{array}{c} 0.27 \\ \hline y \\ \hline \end{array}$	Ν	Maximum at $t = 2, y = 2e^{-2}$	A1	Maximum value of y	
6		0.27	B1 B1 B1	Starts at origin Maximum at their value of y y > 0	
6			1		
		T	0		6

Differential Equations 4758

			nnn	iny M
4758	3 M	ark S	Scheme January 2	20 naths
2(i)	$\frac{dv}{dt} + \frac{3}{1+t}v = g - \frac{3}{1+t}$	M1	Rearrange	
	$I = \exp\left(\int \frac{3}{1+t} \mathrm{d}t\right) = \mathrm{e}^{3\ln(1+t)} = (1+t)^3$	M1 A1 A1	Attempt integrating factor Correct Simplified	
	$(1+t)^{3} \frac{\mathrm{d}v}{\mathrm{d}t} + 3(1+t)^{2} v = g(1+t)^{3} - 3(1+t)^{2}$	F1	Multiply DE by their I	
	$\frac{d}{dt} \left((1+t)^3 v \right) = g (1+t)^3 - 3 (1+t)^2$			
	$(1+t)^{3} v = \int (g(1+t)^{3} - 3(1+t)^{2}) dx$	M1	Integrate	
	$= \frac{1}{4}g(1+t)^{4} - (1+t)^{3} + A$	A1	RHS	
	$v = \frac{1}{4}g(1+t) - 1 + A(1+t)^{-3}$	F1	Divide by their <i>I</i> (must also divide constant)	
	$t = 0, v = 0 \Longrightarrow 0 = \frac{1}{4}g - 1 + A$	M1	Use condition	
	$v = \frac{1}{4}g(1+t) - 1 + \left(1 - \frac{1}{4}g\right)\left(1+t\right)^{-3}$	E1	Convincingly shown	10
(ii)	$(1+t)\frac{\mathrm{d}v}{\mathrm{d}t} + 5v = (1+t)g$	M1	Rearrange	
	$\frac{dv}{dt} + \frac{5}{1+t}v = g$			
		M1 A1	Attempt integrating factor Simplified	
	$(1+t)^{5} \frac{dv}{dt} + 5(1+t)^{4} v = g(1+t)^{5}$	F1	Multiply DE by their I	
	$\frac{\mathrm{d}}{\mathrm{d}t}\left(\left(1+t\right)^{5}v\right) = g\left(1+t\right)^{5}$			
	$(1+t)^5 v = \int g (1+t)^5 dx$	M1	Integrate	
	$=\frac{1}{6}g\left(1+t\right)^{6}+B$	A1	RHS	
	$v = \frac{1}{6}g(1+t) + B(1+t)^{-5}$	F1	Divide by their <i>I</i> (must also divide constant)	
	$t = 0, v = 0 \Longrightarrow 0 = \frac{1}{6}g + B$	M1	Use condition	
	$v = \frac{1}{6}g\left(1 + t - (1 + t)^{-5}\right)$	F1	Follow a non-trivial GS	
	· · · ·			9
(iii)	First model: $\frac{dv}{dt} = \frac{1}{4}g - 3(1 - \frac{1}{4}g)(1 + t)^{-4}$	M1	Find acceleration	
	As $t \to \infty, (1+t)^{-4} \to 0$	B1	Identify term(s) \rightarrow 0 in their solution for either model	
	Hence acceleration tends to $\frac{1}{4}g$	A1		
	Second model $\frac{dv}{dt} = \frac{1}{6}g\left(1+5\left(1+t\right)^{-6}\right)$	M1	Find acceleration	
	Hence acceleration tends to $\frac{1}{6}g$	A1		
				5

4758	Mark Schem	e	January 20	nyman
3(i)	$P = A e^{0.5t}$	M1	Any valid method	
	$t = 0, P = 2000 \Longrightarrow A = 2000$	M1	Use condition	
	$P = 2000 \mathrm{e}^{0.5t}$	A1		
(;;)	05 0 5 1	F 4		3
(11)	$CF \ P = A \mathrm{e}^{0.5t}$	F1	Correct or follows (I)	
	$PI P = a \cos 2t + b \sin 2t$	В1 м1	Differentiate	
	$P = -2a \sin 2t + 2b \cos 2t$	IVI I	Differentiate	
	$-2a\sin 2t + 2b\cos 2t = 0.5(a\cos 2t + b\sin 2t) + 1/0\sin 2t$	M1	Substitute	
	-2a = 0.5b + 170	M1	Compare coefficients	
	2b = 0.5a	M1	Solve	
	solving $\Rightarrow a = -80, b = -20$	A1		
	GS $P = A e^{0.5t} - 80 \cos 2t - 20 \sin 2t$	F1	Their PI + CF (with one arbitrary constant)	
				8
(iii)	$t = 0, P = 2000 \Longrightarrow A = 2080$	M1	Use condition	
	$P = 2080 \mathrm{e}^{0.5t} - 80 \cos 2t - 20 \sin 2t$	F1	Follow a non-trivial GS	
(iv)	t P p	M1	Lise of algorithm	
()	0 2000 1000	A1	2100	
	0.1 2100 1082.58	A1	1082.5	
	0.2 2208	A1	2208	
				4
(v)	(A) Limiting value $\Rightarrow \dot{P} = 0$	M1	Set $\dot{P} = 0$	
	$\Rightarrow P\left(1-\frac{P}{12000}\right)^2 = 0$	M1	Solve	
	(2000)	۸1		
	(as limit non-zero) limiting value – 12000	AI		3
	(B) Growth rate max when			~
	$(p)^{\frac{1}{2}}$	М1	Recognise expression to maximise	
	$f(P) = P\left(1 - \frac{1}{12000}\right) \text{ max}$	1111		
	$\mathbf{f'}(P) = \left(1 - \frac{P}{12000}\right)^{\frac{1}{2}} - \frac{1}{2 \times 12000} P \left(1 - \frac{P}{12000}\right)^{-\frac{1}{2}}$	M1	Reasonable attempt at derivative	
	$f'(P) = 0 \Leftrightarrow \left(1 - \frac{P}{12000}\right) - \frac{1}{2 \times 12000}P = 0$	M1	Set derivative to zero	
	$\Leftrightarrow P = 8000$	Δ1		
		731		4

4758	Mark Scheme	9	January 20	Nynathscio
4(i)	$\ddot{x} = -3\dot{x} + \dot{y}$	M1	Differentiate first equation	
	$=-3\dot{x}+(-5x+y+15)$	M1	Substitute for \dot{y}	
	$y = 3x - 9 + \dot{x}$	M1	y in terms of x, \dot{x}	
	$\ddot{x} = -3\dot{x} - 5x + (3x - 9 + \dot{x}) + 15$	M1	Substitute for y	
	$\ddot{x} + 2\dot{x} + 2x = 6$	E1		5
(ii)	$\lambda^2 + 2\lambda + 2 = 0$	M1	Auxiliary equation	5
()	$\lambda = -1 \pm j$	A1		
	$CF \ x = \mathrm{e}^{-t} \left(A \cos t + B \sin t \right)$	M1	CF for complex roots	
		F1	CF for their roots	
	PI x = a	B1	Constant PI	
	$2a = 6 \Rightarrow a = 3$	B1	Pl correct	
	$GS \ x = 3 + \mathrm{e}^{-t} \left(A \cos t + B \sin t \right)$	F1	Their CF + PI (with two arbitrary constants)	
				7
(iii)	$y = 3x - 9 + \dot{x}$	M1	y in terms of x, \dot{x}	
	$=9+3e^{-t}\left(A\cos t+B\sin t\right)-9$	N/1	Differentiate v and substitute	
	$-e^{-t}\left(A\cos t + B\sin t\right) + e^{-t}\left(-A\sin t + B\cos t\right)$	IVII		
	$y = e^{-t} ((2A+B)\cos t + (2B-A)\sin t)$	A1	Constants must correspond with	
			those in <i>x</i>	3
(iv)	$0 = 3 + A \Longrightarrow A = -3$	M1	Condition on x	
	$0 = 2A + B \Longrightarrow B = 6$	M1	Condition on y	
	$x = 3 + 3e^{-t} \left(2\sin t - \cos t\right)$	F1	Follow their GS	
	$y = 15 \mathrm{e}^{-t} \sin t$	F1	Follow their GS	
				4
(v)	x .	B1 B1	Sketch of x starts at origin Asymptote $x = 3$	
		ы	Asymptote x = 5	
	/ /			
		B1	Sketch of y starts at origin	
	l' 🔿	B1	Decaying oscillations (may	
		B1	Asymptote $y = 0$	
				5

Mark Scheme

4761 N

Mechanics 1

4761	Ма	rk Sch	eme January	W. Myma	1938
	4761	M	Mechanics 1		Cloud.C
Q 1		Mark	Comment	Sub	0
(i)	$15 - \frac{v}{m s^{-1}}$	B1	Acc and dec shown as straight lines		
		B1 B1	Horizontal straight section All correct with v and times marked and at least one axis labelled. Accept (t, v) or (v, t) used.	3	
(ii)	Distance is found from the area	M1	At least one area attempted or equivalent <i>uvast</i> attempted over one appropriate interval.		
	area is $\frac{1}{2} \times 10 \times 15 + 20 \times 15 + \frac{1}{2} \times 5 \times 15$	A1	Award for at least two areas (or equivalent) correct		
	(or $\frac{1}{2} \times (20 + 35) \times 15$)		Allow if a trapezium used and only 1 substitution error.		
	= 412.5 so distance is 412.5 m	A1	FT their diagram. cao (Accept 410 or better accuracy)	3	
		6		<u> </u>	
2 (i)	$\binom{6}{9} = 1.5 \mathbf{a} \text{ giving } \mathbf{a} = \binom{4}{6} \text{ so } \binom{4}{6} \text{ m s}^{-2}$	M1	Use of N2L with an attempt to find a . Condone spurious notation.		
		A1	Must be a vector in proper form. Penalise only once in paper.		
(ii)	Angle is $\arctan\left(\frac{6}{4}\right)$	M1	Use of arctan with their $\frac{6}{4}$ or $\frac{4}{6}$ or equiv. May use F .		
	= 56.309 so 56.3° (3 s. f.)	F1	FT their a provided both cpts are +ve and non-zero.		
(iii)	Using $\mathbf{s} = t\mathbf{u} + 0.5t^2\mathbf{a}$ we have	M1	Appropriate single $uvast$ (or equivalent sequence of $uvast$). If integration used twice condone omission of $r(0)$ but not v(0).	2	
	$\mathbf{s} = 2 \begin{pmatrix} -2\\ 3 \end{pmatrix} + 0.5 \times 4 \begin{pmatrix} 4\\ 6 \end{pmatrix}$	A1	FT their a only		
	so $\begin{pmatrix} 4\\18 \end{pmatrix}$ m	A1	cao. isw for magnitude subsequently found. Vector must be in proper form (penalise		
		7	oniy once in paper).	3	

4761	Ма	rk Sch	eme January	20 20
Q 3		Mark	Comment	Sub
(i)	$m \times 9.8 = 58.8$ so $m = 6$	M1 A1	<i>T</i> = <i>mg</i> . Condone sign error. cao. CWO.	2
(ii)	Resolve \rightarrow 58.8 cos 40 - F = 0	M1	Resolving their tension. Accept $s \leftrightarrow c$. Condone sign errors but not extra forces.	
	<i>F</i> = 45.043 so 45.0 N (3 s. f.)	ы1 А1	$(their 7) \times \cos 40$ (or equivalent) seen Accept ± 45 only.	3
(iii)	Resolve \uparrow <i>R</i> +58.8sin 40-15×9.8=0	M1	Resolving their tension. All forces present. No extra forces. Accept $s \leftrightarrow c$. Condone errors in sign.	
	<i>R</i> = 109.204 so 109 N (3 s. f.)	A1 A1	All correct cao	3
0.4		8 Mork	Commont	Sub
(i)	Resultant is $\begin{pmatrix} 4\\1\\2 \end{pmatrix} + \begin{pmatrix} -6\\2\\4 \end{pmatrix} = \begin{pmatrix} -2\\3\\6 \end{pmatrix}$	M1	Adding the vectors. Condone spurious notation.	500
	Magnitude is $\sqrt{(-2)^2 + 3^2 + 6^2} = \sqrt{49} = 7 \text{ N}$	M1 F1	brily once in the paper). Accept clear components. Pythagoras on their 3 component vector. Allow e.g. -2^2 for $(-2)^2$ even if evaluated as -4 . FT their resultant.	4
(ii)	F + 2G + H = 0	M1	Either F + 2 G + H = 0 or F + 2 G = H	
	So $\mathbf{H} = -2\mathbf{G} - \mathbf{F} = -\begin{pmatrix} -12\\4\\8 \end{pmatrix} - \begin{pmatrix} 4\\1\\2 \end{pmatrix}$	A1	Must see attempt at H = – 2 G – F	
	$= \begin{pmatrix} 8\\ -5\\ -10 \end{pmatrix}$	A1	cao. Vector must be in proper form (penalise only once in the paper).	
		7		3

4761Mark Scheme $Q 5$ $a = 12 - 6t$ $a = 0$ gives $t = 2$ M1 $a = 0$ gives $t = 2$ M1 $x = \int (2 + 12t - 3t^2) dx$ $2t + 6t^2 - t^3 + C$ $x = 3$ when $t = 0$ $x = 3$ when $t = 0$ $x = 2t + 6t^2 - t^3 + 3$ $x = $			2	m.	
Q 5MarkCommentSub $a = 12 - 6t$ M1Differentiation, at least one term correct. $a = 0$ gives $t = 2$ M1Differentiation, at least one term correct. $x = \int (2 + 12t - 3t^2) dx$ M1Integration indefinite or definite, at least one term correct. $2t + 6t^2 - t^3 + C$ M1Integration indefinite integral. Ignore C or limits $x = 3$ when $t = 0$ M1Allow $x = \pm 3$ or argue it is \int_{0}^{2} from A then ± 3 so $3 = C$ andA1Award if seen WWW or $x = 2t + 6t^2 - t^3$ $x(2) = 4 + 24 - 8 + 3 = 23$ mB1integration but not if -3 obtained by integration but not if -3 obtained instead	4761	Mark Sch	eme January	20 nat	AN ANSCIOU
$a = 12 - 6t$ M1 A1 F1Differentiation, at least one term correct. $a = 0$ gives $t = 2$ M1 F1Follow their a $x = \int (2 + 12t - 3t^2) dx$ M1 $2t + 6t^2 - t^3 + C$ Integration indefinite or definite, at least one term correct. $x = 3$ when $t = 0$ M1 So $3 = C$ and $x = 2t + 6t^2 - t^3 + 3$ M1 Allow $x = \pm 3$ or argue it is \int_{0}^{2} from A then ± 3 M1 So $3 = C$ and $x(2) = 4 + 24 - 8 + 3 = 23$ mM1 B1Allow $x = t$ other x if obtained by integration but not if -3 obtained instead	Q 5	Mark	Comment	Sub	*0.0
$a = 0$ gives $t = 2$ F1Follow their a $x = \int (2+12t-3t^2) dx$ M1Integration indefinite or definite, at least one term correct. Correct. Need not be simplified. Allow as definite integral. Ignore C or limits $2t + 6t^2 - t^3 + C$ A1Allow $x = \pm 3$ or argue it is \int_{0}^{2} from A then ± 3 $x = 3$ when $t = 0$ M1Allow $x = \pm 3$ or argue it is \int_{0}^{2} from A then ± 3 $x = 2t + 6t^2 - t^3 + 3$ A1Award if seen WWW or $x = 2t + 6t^2 - t^3$ seen with $+3$ added later. FT their t and their x if obtained by integration but not if -3 obtained instead	a = 12 - 6t	M1 A1	Differentiation, at least one term correct.		
$x = \int (2+12t-3t^2) dx$ M1Integration indefinite or definite, at least one term correct. Correct. Need not be simplified. Allow as definite integral. Ignore C or limits $x = 3$ when $t = 0$ M1Allow $x = \pm 3$ or argue it is \int_{0}^{2} from A then ± 3 so $3 = C$ and 	a = 0 gives $t = 2$	F1	Follow their a		
$2t + 6t^2 - t^3 + C$ A1Correct. Need not be simplified. Allow as definite integral. Ignore C or limits $x = 3$ when $t = 0$ M1Allow $x = \pm 3$ or argue it is \int_{0}^{2} from A then ± 3 so $3 = C$ and $x = 2t + 6t^2 - t^3 + 3$ A1Award if seen WWW or $x = 2t + 6t^2 - t^3$ seen with $+3$ added later. FT their t and their x if obtained by integration but not if -3 obtained instead	$x = \int (2+12t-3t^2) \mathrm{d}x$	M1	Integration indefinite or definite, at least one term correct.		
$x = 3$ when $t = 0$ M1Allow $x = \pm 3$ or argue it is \int_{0}^{1} from Aso $3 = C$ andthen ± 3 $x = 2t + 6t^2 - t^3 + 3$ A1 $x(2) = 4 + 24 - 8 + 3 = 23$ mB1Allow $x = \pm 3$ or argue it is \int_{0}^{1} from Athen ± 3 Aurily and the true is the true	$2t + 6t^2 - t^3 + C$	A1	Correct. Need not be simplified. Allow as definite integral. Ignore C or limits		
so $3 = C$ and $x = 2t + 6t^2 - t^3 + 3$ x(2) = 4 + 24 - 8 + 3 = 23 m A1 A1 A1 A1 A1 A1 A1 A1 Award if seen WWW or $x = 2t + 6t^2 - t^3$ seen with +3 added later. FT their t and their x if obtained by integration but not if -3 obtained instead	<i>x</i> = 3 when <i>t</i> = 0	M1	Allow $x = \pm 3$ or argue it is \int_{0}^{π} from A		
$x = 2t + 6t^2 - t^3 + 3$ A1Award if seen WWW or $x = 2t + 6t^2 - t^3$ seen with +3 added later. FT their t and their x if obtained by integration but not if -3 obtained instead	so $3 = C$ and		then ± 3		
x(2) = 4 + 24 - 8 + 3 = 23 m B1 integration but not if -3 obtained by	$x = 2t + 6t^2 - t^3 + 3$	A1	Award if seen WWW or $x = 2t + 6t^2 - t^3$ seen with +3 added later. ET their <i>t</i> and their <i>x</i> if obtained by		
of +3. [If 20 m seen WWW for displacement award SC6] [Award SC1 for position if constant acceleration used for displacement and then +3 applied]	x(2) = 4 + 24 - 8 + 3 = 23 m	B1	integration but not if -3 obtained by of +3. [If 20 m seen WWW for displacement award SC6] [Award SC1 for position if constant acceleration used for displacement and then +3 applied]		
		Q		8	

Mark Scheme

January 20

aths

Q 6		Mark	Comment	Sub	,ou
(i)	3.5 = 0.5 + 1.5T	M1	Suitable <i>uvast</i> , condone sign errors.		·
	so <i>T</i> = 2 so 2 s	A1	сао		
	$s = \frac{3.5 + 0.5}{2} \times 2$	M1	Suitable uvast condone sign errors		
	2 2				
	so <i>s</i> = 4 so 4 m	F1	FT their T.		
			[If s found first then it is cao. In this		
			case when finding <i>I</i> , FI their <i>s</i> , if		
			useu.j	4	
(ii)				-	-
(II) (A)			Use of N2L Allow weight omitted		
(~)	$N2L \downarrow : 80 \times 9.8 - T = 80 \times 1.5$	M1	and use of $F = maa$		
			Condone errors in sign but do not		
			allow extra forces.		
		B1	weight correct (seen in (A) or (B))		
	<i>T</i> = 664 so 664 N	A1	сао		
(B)			N2L with all forces and using $F = ma$.		
	$N_{2L} \neq : 80 \times 9.8 - 1 = 80 \times (-1.5)$	IM1	Condone errors in sign but do not		
	$T = 0.04 \pm 0.004$ N	۸1	allow exita forces.		
	7 - 904 SO 904 N			5	
(iii)			Use of N2L with $F = ma$ Allow 1 force	5	
(111)	N21 \uparrow · 2500-80×98-116=80a	M1	missing. No extra forces. Condone		
			errors in sign.		
		A1			
	$a = 20 so 20 m s^{-2}$ unwards	۸1	± 20 , accept direction wrong or		
			omitted		
		A1	upwards made clear (accept diagram)		
				4	_
(iv)	N2L \uparrow on equipment: $80 - 10 \times 9.8 = 10a$	M1	Use of N2L on equipment. All forces.		
			F = ma.		
	$2 - 1^{\circ}$	۸1	Allow ± 1.9		
	a1.8	AI			
			N2L for system or for man alone		
	N2L ↑	M1	Forces correct (with no extras):		
			accept sign errors; their ±1.8 used		
	either				
	all: $T - (80 + 10) \times 9.8 - 116 = 90 \times (-1.8)$				
	or				
	on man: <i>T</i> – (80×9.8) – 116 – 80				
	$= 80 \times (-1.8)$				
	<i>T</i> = 836 so 836 N	A1	cao		
			INB The answer 836 N is		
			independent of the value taken for g		
			weights are omitted 1		
				4	
		17		-	1
		1.1			L

4761	Ν	Nark S	Scheme January	w.nyma.	My Marins
Q 7		Mark	Comment	Sub	OUD.COM
(i)	Horiz $21t = 60$	M1	Use of horizontal components and $a = 0$ or		
	so $\frac{20}{7}$ s (2.8571)	A1	$s = vt - 0.5at^2$ with $v = 0$. Any form acceptable. Allow M1 A1 for answer seen WW.		
			[If $s = ut + 0.5at^2$ and $u = 0$ used without justification award M1 A0] [If $u = 28$ assumed to find time then award SC1]		
	either $0 = u - 9.8 \times \frac{20}{7}$	M1	Use of $v = u + at$ (or $v^2 = u^2 + 2as$) with $v = 0$.		
	or $-u = u - 9.8 \times \left(\frac{40}{7}\right)$		appropriate t.		
	or $40 = u \times \frac{20}{7} - 4.9 \left(\frac{20}{7}\right)^2$		or Use of $s = ut + 0.5at^2$ with $s = 40$ and appropriate t Condone sign errors and, where appropriate, $u \leftrightarrow v$.		
	so <i>u</i> = 28 so 28 m s ⁻¹	E1	Accept signs not clear but not errors. Enough working must be given for 28 to be properly shown. [NB $u = 28$ may be found first and used to find time]		
				4	
(ii)	$y = 28t - 0.5 \times 9.8t^2$	E1	Clear & convincing use of $g = -9.8$ in		
			$s = ut + 0.5at^2$ or $s = vt - 0.5at^2$ NB: AG	1	
(iii)	Start from same height with same (zero)	E1	For two of these reasons		
	vertical speed at same time, same acceleration				
	Distance apart is $0.75 \times 21t = 15.75t$	M1	0.75×21 <i>t</i> seen or 21 <i>t</i> and 5.25 <i>t</i> both seen with intention to subtract.		
		A1	Need simplification - LHS alone insufficient. CWO.		
(iv)				3	
(N) (A)	either Time is $\frac{20}{7}$ s by symmetry	B1	Symmetry or <i>uvast</i>		
	so $15.75 \times \frac{20}{7} = 45$ so 45 m	B1	FT their (iii) with $t = \frac{20}{7}$		
	By symmetry one travels 60 m so the other travels 15 m in	B1			
	time ($\frac{1}{4}$ speed) so 45 m.	B1			
			[SC1 if 90 m seen]	2	
(B)	see next page				

A764 Mark Sahama	N. My Marker
4761 Wark Scheme	January 200 4775 Cho
Q7 continued	
(B) [SC1 if either and or mether $\pm 30 = 28t - 4.9t^2$ or $\pm 10 = 4$	ods mixed to give
either Time to fall is $40-10 = 0.5 \times 9.8 \times t^2$ M1 Considering time from expl Condense sign errors	losion with $u = 0$.
t = 2.47435	
need 15.75×2.47435=38.971 so 39.0 (3sf) or	
Need time so $10 = 28t - 4.9t^2$ M1 Equating $28t - 4.9t^2 = \pm 10$	
4.9 $t^2 - 28t + 10 = 0$ so $t = \frac{28 \pm \sqrt{28^2 - 4 \times 4.9 \times 10}}{9.8}$ M1* Dep. Attempt to solve quarthat could give two roots.	dratic by a method
so 0.382784 or 5.33150 A1 Larger root correct to at lea Both method marks may be correct roots alone (to at lea ISC1 for either root seen W	ast 2 s. f. e implied from two east 1 s. f.). /Wl
Time required is 5.33150 $-\frac{20}{7}$ = M1	
need 15.75×2.47435=38.971 so 39.0 (3sf) F1 FT their (iii) only.	5
(v) Horiz $(r-)$ 21t P1	Ŭ
Find $(x - y) \ge h$ Elim t between $x = 2h$ and $y = 28t - 4.9t^2$ M1 Intention must be clear, with made.	th some attempt
so $y = 28\left(\frac{x}{21}\right) - 4.9\left(\frac{x}{21}\right)^2$ A1 $\begin{cases} t \text{ completely and correctly expression for } x \text{ and } c \text{ accept wrong notation if su explicitly given correct value e.g. } \frac{x^2}{21} \text{ seen as } \frac{x^2}{441}. \end{cases}$	eliminated from correct <i>y</i> . Only ibsequently ie
so $y = \frac{4x}{3} - \frac{0.1x^2}{9} = \frac{1}{90} (120x - x^2)$ E1 Some simplification must b	e shown.
[SC2 for 3 points shown to Award more only if it is may trajectory is a parabola (b) parabola]	be on the curve. de clear that (a) 3 points define a
19	4

				mm	1
4762 Ma		rk Scl	heme Janua	ry 20	N Math
	4762	N	Nechanics 2		scloud
Q1		Mark	Comment	Sub	
(a) (i)	either In direction of the force I = Ft = mv so $1500 \times 8 = 4000v$ giving $v = 3$ so 3 m s ⁻¹	M1 A1 A1	Use of <i>Ft = mv</i>		
	N2L gives $a = \frac{1500}{4000}$	M1	Appropriate use of N2L and uvast		
	$v = 0 + \frac{1500}{4000} \times 8$	A1			
	giving $v = 3 \text{ so } 3 \text{ m s}^{-1}$	A1		3	
(ii)	before 500 4000 after 500 4000 $V_{\rm S} {\rm m} {\rm s}^{-1}$				
	PCLM $12000 = 4000V_{\rm R} + 500V_{\rm S}$	M1	Appropriate use of PCLM		
	so $24 = 8V_{\rm R} + V_{\rm S}$	A1	Any form		
	NEL $\frac{15}{0-3} = -0.2$	M1	Appropriate use of NEL		
	So $V_{\rm S} - V_{\rm R} = 0.6$ Solving $V_{\rm R} = 2.6, V_{\rm S} = 3.2$ so ram 2.6 m s ⁻¹ and stone 3.2 m s ⁻¹	A1 A1 F1	Either value	6	
(iii)	$0.5 \times 4000 \times 3^2 - 0.5 \times 4000 \times 2.6^2 - 0.5 \times 500 \times 3.2^2$	M1 B1	Change in KE. Accept two terms Any relevant KE term correct (FT their speeds)		
				3	
(b)	see over				

4762	Mark \$	Scheme Janua	www.myma
1	Mark	Comment	Sub
b) 72i N s	B1	Neglect units but must include direction	
= $(36i + 36\sqrt{3}j)$ N s	E1	Evidence of use of 8 kg , 9 m s $^{-1}$ and 60 $^{\circ}$	
			2
) $72i + (36i + 36\sqrt{3}j) = 12(ui + vj)$	M1	PCLM. Must be momenta both sides	
Equating components 72 + 36 = $12u$ so $u = 9$	M1	Both	
$36\sqrt{3} = 12v \text{ so } v = 3\sqrt{3}$		Dom	3
i) either			
$4 \times 18 = 8 \times 9$ so equal momenta so $60/2 = 30^{\circ}$	M1	Must be clear statements	
	A1	сао	
or			
$\arctan\left(\frac{3\sqrt{3}}{3}\right) = \arctan\left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}$	M1	FT their u and v .	
	A1	сао	2
	19		

Q 2		Mark	Comment	Sub
(i) (A)	$0.5 \times 80 \times 3^2 = 360 \text{ J}$	M1 A1	Use of KE	2
(B)	$360 = F \times 12$ so <i>F</i> = 30 so 30 N	M1 F1	<i>W</i> = <i>Fd</i> attempted FT their WD	2
(ii)	Using the WE equation	M1	Attempt to use the WE equation. Condone one missing term	
	$0.5 \times 80 \times 10^2 - 0.5 \times 80 \times 4^2$	M1	Δ KE attempted	
	$= 80 \times 9.8 \times h - 1600$ h = 6.32653 so 6.33 (3 s. f.)	B1 A1 A1	1600 with correct sign All terms present and correct (neglect signs) cao	
				5
(iii) (A)	We have driving force $F = 40$ so 200 = 40v and v = 5 so 5 m s ⁻¹	B1 M1 A1	May be implied Use of <i>P</i> = <i>Fv</i>	
				3
(B)	From N2L, force required to give accn is $F-40=80\times 2$ so $F = 200$ $P = 200\times 0.5 = 100$ so 100 W	M1 A1 A1 M1 A1	Use of N2L with all terms present (neglect signs) All terms correct correct use of P = Fv cao	
				5
		17		

4762		Mark	Scheme January	W. Myman	My Maths
Q 3		Mark	Comment	Sub	40.
(i)	For \overline{z} $(2 \times 20 \times 100 + 2 \times 50 \times 120)\overline{z}$ $= 2 \times 2000 \times 50 + 2 \times 6000 \times 60$ so $\overline{z} = 57.5$ and $\overline{y} = 0$	M1 B1 B1 A1 B1	Method for c.m. Total mass of 16000 (or equivalent) At least one term correct NB This result is given below. NB This result is given below. Statement (or proof) required. N.B. If incorrect axes specified, award max 4/5	5	
(ii)	\overline{y} and \overline{z} are not changed with the folding For \overline{x} $100 \times 120 \times 0 + 2 \times 20 \times 100 \times 10 = 16000\overline{x}$ so $\overline{x} = \frac{40000}{16000} = 2.5$	E1 M1 B1 E1	A statement, calculation or diagram required. Method for the c.m. with the folding Use of the 10 Clearly shown	4	
(iii)	Moments about AH. Normal reaction acts through this line c.w. $P \times 120 - 72 \times (20 - 2.5) = 0$ so $P = 10.5$	M1 B1 B1 A1 A1	May be implied by diagram or statement $20-2.5$ or equivalent All correct cao	5	
(iv)	$F_{\text{max}} = \mu R$ so $F_{\text{max}} = 72\mu$ For slipping before tipping we require $72\mu < 10.5$ so $\mu < 0.1458333(7_{48})$	M1 A1 M1 A1	Allow $F = \mu R$ Must have clear indication that this is max F Accept \leq . Accept their F_{max} and R . cao	4	

				www.mym
4762		Mark	Scheme Januar	y 20 िले
Q 4		Mark	Comment	Sub
(i)	Centre of CE is 0.5 m from D a.c. moment about D $2200 \times 0.5 = 1100$ so 1100 N m c.w moments about D $R \times 2.75 - 1100 = 0$ R = 400 so 400 N	B1 M1 E1 M1 B1 A1	Used below correctly Use of their 0.5 0.5 must be clearly established. Use of moments about D in an equation Use of 1100 and 2.75 or equiv	6
(ii)	c.w moments about D $W \times 1.5 - 1100 - 440 \times 2.75 = 0$ so W = 1540	M1 A1 E1	Moments of all relevant forces attempted All correct Some working shown	3
(iii) (A)	c.w. moments about D $1.5 \times 1540 \cos 20 - 1.75T$ $-1100 \cos 20 - 400 \times 2.75 \cos 20 = 0$	M1 M1	Moments equation. Allow one missing term; there must be some attempt at resolution. At least one res attempt with correct length Allow sin $\leftrightarrow \cos$	
	<i>T</i> = 59.0663 so 59.1 N (3 s. f.)	A1 B1 A1 A1	Any two of the terms have cos 20 correctly used (or equiv) 1.75 <i>T</i> All correct cao Accept no direction given	6
(iii) (<i>B</i>)	either Angle required is at 70° to the normal to CE	B1		
	so $T_1 \cos 70 = 59.0663$ so $T_1 = 172.698$ so 173 N (3 s.f.)	M1 A1	FT (iii) (A)	
	or $400\cos 20 \times 2.75 + 1100\cos 20$ $= 1540\cos 20 \times 1.5 - T\sin 20 \times 1.75$	M1	Moments attempted with all terms present	
	<i>T</i> = 172.698 so 173 N (3s.f.)	A1 A1	All correct (neglect signs) FT(iii)(A)	3
		18		

4763
7700

			www.p
4763	Mark Sche	me	January 20
	4763 Me	chanics 3	
1(a)(i)	$[Force] = MLT^{-2}$	B1	
(1)		2	
(11)	$[E] = \frac{[F][l_0]}{[A][l - l_0]} = \frac{(M L T^{-2})(L)}{(L^2)(L)}$ $= M L^{-1} T^{-2}$	В1 M1 A1	for $[A] = L^2$ Obtaining the dimensions of <i>E</i>
(iii)	$T = L^{\alpha} (M L^{-3})^{\beta} (M L^{-1} T^{-2})^{\gamma}$ -2\gamma = 1, \beta + \gamma = 0	3	
	$\gamma = -\frac{1}{2}$ $\beta = \frac{1}{2}$ $\alpha - 3\beta - \gamma = 0$ $\alpha = 1$	B1 cao F1 M1 A1 A1 5	Obtaining equation involving α, β, γ
(b)	AP = 1.7 m $F = T \cos \theta$ $R + T \sin \theta = 5 \times 9.8$	B1 M1 M1	Resolving in any direction Resolving in another direction (<i>M1 for resolving requires no</i> <i>force omitted, with attempt to</i> <i>resolve all appropriate forces</i>)
	$T \cos \theta = 0.4(49 - T \sin \theta)$ $\frac{8}{17}T = 0.4(49 - \frac{15}{17}T)$ T = 23.8	M1 A1 A1	Using $F = 0.4R$ to obtain an equation involving just one force (or k) Correct equation Allow $T \cos 61.9$ etc
	T = k(1.7 - 1.5) Stiffness is 119 N m ⁻¹	M1 A1	or $R = 28$ or $F = 11.2$ May be implied
		8	Allow M1 for $T = \frac{\lambda}{1.5} \times 0.2$ If $R = 49$ is assumed, max marks are B1M1M0M0A0A0M1A0

4763	Mark Sche	eme	January 20
2(a)(i)	0.1 + 0.01 × 9.8 = 0.01 × $\frac{u^2}{0.55}$ Speed is 3.3 ms ⁻¹	M1 A1 A1	Using acceleration $u^2/0.55$
(ii)	$\frac{1}{2}m(v^2 - u^2) = mg(2 \times 0.55 - 0.15)$ $\frac{1}{2}(v^2 - 3.3^2) = 9.8 \times 0.95$ $v^2 = 29.51$ $R - mg\cos\theta = m\frac{v^2}{a}$ $0.4 \qquad 29.51$	M1 A1 M1	Using conservation of energy (<i>ft is</i> $v^2 = u^2 + 18.62$) Forces and acceleration
	$\frac{R - 0.01 \times 9.8 \times \frac{0.4}{0.55} = 0.01 \times \frac{25.51}{0.55}}{\text{Normal reaction is } 0.608 \text{ N}}$	A1 A1	towards centre (ft is $\frac{u^2 + 22.54}{55}$)
(b)(i)	$T = 0.8 r \omega^{2}$ $T = \frac{160}{2} (r - 2)$ $\omega^{2} = \frac{80(r - 2)}{0.8r} = \frac{100(r - 2)}{r}$ $\omega^{2} = 100 - \frac{200}{r} < 100, \text{ so } \omega < 10$	B1 B1 E1 E1	
(ii)	EE = $\frac{1}{2} \times \frac{160}{2} \times (r-2)^2 = 40(r-2)^2$ KE = $\frac{1}{2}m(r\omega)^2$ = $\frac{1}{2} \times 0.8 \times r^2 \times \frac{100(r-2)}{r}$ = $40r(r-2)$ Since $r > r-2$, $40r(r-2) > 40(r-2)^2$ i.e. KE > EE	B1 M1 A1 E1	Use of $\frac{1}{2}mv^2$ with $v = r\omega$ From fully correct working only
(iii)	When $\omega = 6$, $36 = \frac{100(r-2)}{r}$ r = 3.125 T = 80(r-2) = 80(3.125 - 2)	M1 M1	Obtaining <i>r</i>
	Tension is 90 N	A1 cao	3

4763	Μ	e January 20	My Maths		
3 (i)	$\frac{dx}{dt} = A\omega\cos\omega t - B\omega\sin\omega t$ $\frac{d^2x}{dt^2} = -A\omega^2\sin\omega t - B\omega^2\cos\omega t$ $= -\omega^2(A\sin\omega t + B\cos\omega t) = -\omega^2 x$	B1 B1 ft E1	3	Must follow from their \dot{x} Fully correct completion SR For $\dot{x} = -A\omega\cos\omega t + B\omega\sin\omega t$ $\ddot{x} = -A\omega^2\sin\omega t - B\omega^2\cos\omega t$ award B0B1E0	
(ii)	$B = 2$ $A\omega = -1.44$ $-B\omega^{2} = -0.18 or$ $-0.18 = -\omega^{2}(2)$ $\omega = 0.3, A = -4.8$	B1 A1 cao M1 A1 cao A1 cao	6	Using $\frac{dx}{dt} = -1.44$ when $t = 0$ $\frac{d^2x}{dt^2} = -0.18$ when $t = 0$ (or $x = 2$)	
(iii)	Period is $\frac{2\pi}{\omega} = \frac{2\pi}{0.3} = 20.94 = 20.9 \text{ s}$ (3 sf) Amplitude is $\sqrt{A^2 + B^2} = \sqrt{4.8^2 + 2^2}$ = 5.2 m	E1 M1 A1	3	or $1.44^2 = 0.3^2(a^2 - 2^2)$	
(iv)	$x = -4.8 \sin 0.3t + 2 \cos 0.3t$ $v = -1.44 \cos 0.3t - 0.6 \sin 0.3t$ When t = 12, x = 0.3306 (v = 1.56) When t = 24, x = -2.5929 (v = -1.35) Distance travelled is (5.2 - 0.3306) + 5.2 + 2.5929 = 12.7 m	M1 A1 M1 A1	5	Finding x when $t = 12$ and $t = 24$ Both displacements correct Considering change of direction Correct method for distance ft from their A, B, ω and amplitude: Third M1 requires the method to be comparable to the correct one A1A1 both require $\omega \approx 0.3, A \neq 0, B \neq 0$ Note ft from $A = +4.8$ is $x_{12} = -3.92 (v < 0) x_{24} = 5.03 (v > 0)$ Distance is $(5.2 - 3.92) + 5.2 + 5.03$ = 11.5	

4763		Mark Scheme	January 20 January 20
4 (i)	$V = \int_{1}^{8} \pi \left(x^{-\frac{1}{3}} \right)^{2} dx$	M1	π may be omitted throughout
	$=\pi \left[3x^{\frac{1}{3}} \right]_{1}^{8} = 3\pi$	A1	
	$V \overline{x} = \int_{1}^{8} \pi x (x^{-\frac{1}{3}})^2 \mathrm{d}x$	M1	
	$=\pi\left\lfloor\frac{3}{4}x^{\frac{3}{3}}\right\rfloor_{1}=\frac{45}{4}\pi$	A1	
	$\overline{x} = \frac{4\pi}{3\pi}$ $= \frac{15}{4} = 3.75$	M1	Dependent on previous M1M1
	4	A1 6	
(ii)	$A = \int_1^8 x^{-\frac{1}{3}} \mathrm{d}x$	M1	
	$= \left[\frac{3}{2} x^{\frac{2}{3}} \right]_{1}^{8} = \frac{9}{2} = 4.5$	A1	
	$A\overline{x} = \int_{1}^{8} x \left(x^{-\frac{1}{3}} \right) \mathrm{d}x$	M1	
	$= \left[\frac{3}{5} x^{\frac{5}{3}} \right]_{1}^{0} = \frac{93}{5} = 18.6$	A1	
	$\overline{x} = \frac{18.6}{4.5} = \frac{62}{15} (\approx 4.13)$	A1	
	$A \overline{y} = \int_{1}^{8} \frac{1}{2} (x^{-\frac{1}{3}})^2 \mathrm{d}x$	M1	If $\frac{1}{2}$ omitted, award M1A0A0
	$= \left[\frac{3}{2} x^{\frac{1}{3}} \right]_{1}^{8} = \frac{3}{2} = 1.5$	A1	
	$\overline{y} = \frac{1.5}{4.5} = \frac{1}{3}$	A1 8	

4763	Mark Sche	me		January 20	M ANSIIS
(iii)	$(1)\left(\frac{\overline{x}}{\overline{y}}\right) + (3.5)\left(\frac{4.5}{0.25}\right) = (4.5)\left(\frac{62}{15}\right) = \left(\frac{18.6}{1.5}\right)$	M1 M1		Attempt formula for CM of composite body (one coordinate sufficient) Formulae for both coordinates; signs must now be correct, but areas (1 and 3.5) may be wrong.	SUG.COM
	— 2.95	A1		ft only if $1 < \overline{x} < 8$	
	$x = 2.85$ $\overline{y} = 0.625$	A1	4	ft only if $0.5 < \overline{y} < 1$	
	,			Other methods: M1A1 for \bar{x} M1A1 for \bar{y}	
				(In each case, M1 requires a complete and correct method leading to a numerical value)	

		mm		Star A
4766	Mark Scheme	January 2	nyma	T Math
		• • • • • • • • • • • • • • • • • • •		NSC/O
	4766 Statistics 1			SUD.COM
Q1	Mode = 7	B1 cao		
(i)	Median = 12.5	B1 cao	2	
(ii)	Positive or positively skewed	E1	1	
(iii)	(A) Median (B) There is a large outlier or possible outlier of 58 / figure of 58	E1 cao E1inden	2	
	Just 'outlier' on its own without reference to either 58 or large scores E0			
	Accept the large outlier affects the mean (more) E1			
(iv)	There are $14.75 \times 28 = 413$ messages So total cost = 413×10 pence = £41.30	M1 for 14.75 \times 28 but 413 can also imply the mark A1 cao	2	
		TOTAL	7	
Q2 (i)	$\binom{4}{3} \times 3! = 4 \times 6 = 24 \text{ codes or } {}^{4}P_{3} = 24 \text{ (M2 for } {}^{4}P_{3}\text{)}$ Or $4 \times 3 \times 2 = 24$	M1 for 4 M1 for ×6 A1	3	
(ii)	$4^3 = 64$ codes	M1 for 4 ³ A1 cao	2	
		TOTAL	5	
Q3 (i)	Probability = $0.3 \times 0.8 = 0.24$	M1 for 0.8 from (1-0.2) A1	2	
()	<i>Either:</i> $P(AUB) = P(A) + P(B) - P(A \cap B)$	M1 for adding 0.3 and		
(11)	$= 0.3 + 0.2 - 0.3 \times 0.2$	M1 for subtraction of		
	= 0.5 - 0.06 = 0.44	(0.3 × 0.2) A1 cao		
	<i>Or:</i> P(AUB) = 0.7 × 0.2 + 0.3 × 0.8 + 0.3 × 0.2	M1 either of first terms	2	
	= 0.14 + 0.24 + 0.06 = 0.44	A1	З	
	$Or: P(AUB) = 1 - P(A' \cap B')$	M1 for 0.7 × 0.8 or		
	= 1 - 0.7 × 0.8 = 1 - 0.56 = 0.44	M1 for complete method as seen		
(iii)	$P(A B) = \frac{P(A \cap B)}{P(B)} = \frac{0.06}{0.44} = \frac{6}{44} = 0.136$	M1 for numerator of their 0.06 only M1 for 'their 0.44' in denominator A1 FT (must be valid	3	
		р)	0	
		TOTAL	8	

4766	Mark Scheme	January 20	maths	Naths Cloud
Q4 (i)	$E(X) = 1 \times 0.2 + 2 \times 0.16 + 3 \times 0.128 + 4 \times 0.512 = 2.952$ Division by 4 or other spurious value at end loses A mark $E(X^2) = 1 \times 0.2 + 4 \times 0.16 + 9 \times 0.128 + 16 \times 0.512 = 10.184$	M1 for Σ <i>rp</i> (at least 3 terms correct) A1 cao M1 for $\Sigma x^2 p$ at least 3		·com
	$Var(X) = 10.184 - 2.952^2 = 1.47$ (to 3 s.f.)	terms correct M1 for $E(X^2) - E(X)^2$ Provided ans > 0 A1 FT their $E(X)$ but not a wrong $E(X^2)$	5	
(ii)	Expected cost = 2.952 × £45000 = £133000 (3sf)	B1 FT (no extra multiples / divisors introduced at this stage)	1	
(iii)		G1 labelled linear scales G1 height of lines	2	
		TOTAL	8	
Q5 (i)	Impossible because the competition would have finished as soon as Sophie had won the first 2 matches	E1	1	
(ii)	SS, JSS, JSJSS	B1, B1, B1 (-1 each error or omission)	3	
(iii)	$0.7^2 + 0.3 \times 0.7^2 + 0.7 \times 0.3 \times 0.7^2 = 0.7399$ or 0.74(0) { 0.49 + 0.147 + 0.1029 = 0.7399}	M1 for any correct term M1 for any other correct term M1 for sum of all three correct terms A1 cao	4	
		TOTAL	8	

		www.	14
4766	Mark Scheme	January 20	mains
	Section B		- CHOLA
Q6 (i)	Mean = $\frac{180.6}{12}$ = 15.05 or 15.1	B1 for mean	^{4.} Com
	$S_{xx} = 3107.56 - \frac{180.6^2}{12}$ or $3107.56 - 12$ (their 15.05) ² =	M1 for attempt at S_{xx}	
	(389.53)		3
	$s = \sqrt{\frac{389.53}{11}} = 5.95$ or better	A1 cao	
(;;)	NB Accept answers seen without working (from calculator) $\overline{x} + 2a = 15.05 + 2.05 = 26.05$	M1 for attempt at either	
(11)	$x + 2s = 15.05 + 2 \times 5.95 = 20.95$ $\overline{x} - 2s = 15.05 - 2 \times 5.95 = 3.15$ So no outliers	M1 for both A1 for limits and conclusion FT their	3
		mean and sd	
(iii)	New mean = $1.8 \times 15.05 + 32 = 59.1$	B1FT	
	New <i>s</i> = 1.8 × 5.95 = 10.7	M1 A1FT	3
(iv)	New York has a higher mean or ' is on average' higher (oe)	E1FT using ⁰ F (\overline{x} dep)	
	New York has greater spread /range /variation or SD (oe)	E1FT using ${}^{\scriptscriptstyle 0}$ F (σ dep)	2
(v)		D1 for all correct	
	Upper bound (70) 100 110 120 150 170 190	cumulative frequencies	
	Cumulative frequency (0) 6 14 24 35 45 48	(may be implied from	
		at this stage	
	$\left[\begin{array}{c} \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	G1 for linear scales (linear from 70 to 190) ignore x < 70 vertical: 0 to 50 but not beyond 100 (no inequality scales) G1 for labels	5
(vi)	Hours	(UCB, their cf). <u>Ignore</u> (70,0) at this stage. No mid – point or LCB plots.	
	NB all G marks dep on attempt at cumulative frequencies.	G1 for joining all of 'their points'(line or	
	NB All G marks dep on attempt at cumulative frequencies	smooth curve) AND now including (70,0)	2
	Line on graph at cf = 43.2(soi) or used 90th percentile = 166	M1 for use of 43.2 A1FT but dep on 3rd G mark earned	
		TOTAL	18

Mark Scheme

4766	Mark Scheme	January 20	My Asens
Q7 (i)	X ~ B(12, 0.05) (A) P(X = 1) = $\binom{12}{1} \times 0.05 \times 0.95^{11} = 0.3413$	M1 0.05×0.95^{11} M1 $\binom{12}{1} \times pq^{11}$ (p+q) =	
	OR from tables $0.8816 - 0.5404 = 0.3412$	A1 cao OR: M1 for 0.8816 seen and M1 for subtraction of 0.5404	3 2
	(B) $P(X \ge 2) = 1 - 0.8816 = 0.1184$ (C) Expected number $E(X) = np = 12 \times 0.05 = 0.6$	A1 cao M1 for $1 - P(X \le 1)$ A1 cao M1 for 12×0.05	2
(ii)	<i>Either</i> : $1 - 0.95^n \le \frac{1}{3}$ $0.95^n \ge \frac{2}{3}$ $n \le \log \frac{2}{3}$ /log0.95, so $n \le 7.90$ Maximum $n = 7$ <i>Or:</i> (using tables with $p = 0.05$): n = 7 leads to $P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6983 = 0.3017 (< \frac{1}{3})$ or $0.6983 (> \frac{2}{3})$ n = 8 leads to $P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6634 = 0.3366 (> \frac{1}{3})$ or $0.6634 (< \frac{2}{3})$ Maximum $n = 7$ (total accuracy needed for tables) <i>Or:</i> (using trial and improvement): $1 - 0.95^7 = 0.3017 (< \frac{1}{3})$ or $0.95^7 = 0.6983 (> \frac{2}{3})$ $1 - 0.95^8 = 0.3366 (> \frac{1}{3})$ or $0.96^8 = 0.6634 (< \frac{2}{3})$ Maximum $n = 7$ (3 sf accuracy for calculations)	M1 for equation in <i>n</i> M1 for use of logs A1 cao M1indep M1indep A1 cao dep on both M's M1indep (as above) M1indep (as above)	3
(iii)	NOTE: $n = 7$ unsupported scores SC1 only Let $X \sim B(60, p)$ Let p = probability of a bag being faulty H ₀ : $p = 0.05$ H ₁ : $p < 0.05$ P($X \le 1$) = $0.95^{60} + 60 \times 0.05 \times 0.95^{59} = 0.1916 > 10\%$ So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that the new process reduces the failure rate or scientist incorrect/ wrong.	A1 Ca0 dep on both M's B1 for definition of <i>p</i> B1 for H ₀ B1 for H ₁ M1 A1 for probability M1 for comparison A1 E1	8
		TOTAL	18

Mark Scheme

January 20. Tainscloud.com

4767 Statistics 2

(i)	x is independent, y is dependent	B1	
	since the values of <i>x</i> are chosen by the student	E1 dep	
	but the values of <i>y</i> are dependent on <i>x</i>	E1 dep	3
(ii)	$\bar{x} = 2.5, \ \bar{y} = 80.63$	B1 for \overline{x} and \overline{y} used	
	$Sxy = 2530.3 - 30 \times 967.6/12 = 111.3$	(SOI)	
	$b = \frac{1}{5} = \frac{1}{90 - 30^2/12} = \frac{1}{15} = 7.42$		
	50 50 12 15	M1 for attempt at gradient	
	$2530 \frac{3}{12} - 2.50 \times 80.63 = 9.275$	(b)	
	OR $b = \frac{20000712}{00/12} = \frac{2000000}{1.25} = 7.42$	A1 for 7.42 cao	
	90/12 - 2.30 1.23	M1 for equation of line	
	$v - \overline{v} = h(x - \overline{r})$	MIT IOI equation of line	
	$ \rightarrow \chi 90.62 - 7.42(\chi - 2.5) $	A1 FT ($b>0$) for complete	
	$ \Rightarrow y = 60.03 = 7.42(x = 2.3) $	equation	5
	$\Rightarrow y = 7.42x + 02.00$		Ū
(iii)	(A) For $x = 1.2$ predicted growth	M1 for at least one	
(,	$= 7.42 \times 1.2 + 62.08 = 71.0$	prediction attempted.	
	(B) For $x = 4.3$, predicted growth	A1 for both answers	
	= 7.42 × 4.3 + 62.08 = 94.0	(FT their equation if <i>b</i> >0)	
	Valid relevant comments relating to the predictions		
	such as :	E1 (first sommant)	
	Comment relating to the fact that $x = 4.2$ is only just		4
	boyond the existing data $4.5 \times 10^{-4.5}$	E1 (second comment)	
	Comment relating to size of residuals near each		
	predicted value (need not use word 'residual')		
(iv)	$x = 3 \Rightarrow$	M1 for prediction	
(/	predicted $y = 7.42 \times 3 + 62.08 = 84.3$		
	Residual = $80 - 84.3 = -4.3$	M1 for subtraction	
		A1 FT (<i>b</i> >0)	3
(1)	This point is a long way from the regression line		
(*)	The line may be valid for the range used in the	E1 for valid in range	
	experiment but then the relationship may break down	E1 for <i>either</i> 'may	
	for higher concentrations, or the relationship may be	break down' or	
	non linear.	'could be non linear'	3
		or other relevant	
		comment	
			18

Mark Scheme

		m	m
4767	Mark Scheme	January	· myma
Que	stion 2		
(i)	Binomial (94,0.1)	B1 for binomial B1 dep for parameters	2
(ii)	<i>n</i> is large and <i>p</i> is small	B1, B1 Allow appropriate numerical ranges	2
(iii)	$\lambda = 94 \times 0.1 = 9.4$	B1 for mean	
	(A) $P(X = 4) = e^{-9.4} \frac{9.4^4}{4!} = 0.0269 (3 \text{ s.f.})$ or from tables = 0.0429 - 0.0160 = 0.0269 <i>cao</i> (B) Using tables: $P(X \ge 4) = 1 - P(X \le 3)$	M1 for calculation or use of tables A1 M1 for attempt to find	
	= 1 - 0.0160 = 0.9840 <i>cao</i>	P(X≥4) A1 cao	5
(iv)	P(sufficient rooms throughout August) = 0.9840^{31} = 0.6065	M1 A1 FT	2
(v)	(A) 31 × 94 = 2914 Binomial (2914,0.1)	B1 for binomial B1 dep, for parameters	2
	(<i>B</i>)Use Normal approx with $\mu = np = 2914 \times 0.1 = 291.4$	B1	
	$\sigma^2 = npq = 2914 \times 0.1 \times 0.9 = 262.26$	B1	
	$P(X \le 300.5) = P\left(Z \le \frac{300.5 - 291.4}{\sqrt{262.26}}\right)$ $= P(Z \le 0.5619) = \Phi(0.5619) = 0.7130$	B1 for continuity corr. M1 for probability using correct tail A1 cao , (but FT wrong or omitted CC)	5
			18

		12m	'n
4767	Mark Scheme	January	·nymai
Ques	stion 3		
(i)	$X \sim N(56, 6.5^2)$	M1 for standardizing	
	$P(52.5 < X < 57.5) = P\left(\frac{52.5 - 56}{6.5} < Z < \frac{57.5 - 56}{6.5}\right)$		
	= P(-0.538 < Z < 0.231)	A1 for -0.538 and 0.231	
	$= \Phi(0.231) - (1 - \Phi(0.538))$ = 0.5914 - (1 - 0.7046) = 0.5914 - 0.2954	M1 for prob. with tables and correct structure A1 CAO (min 3 s.f., to include use of difference	
	= 0.2960 (4 s.f.) <i>or</i> 0.296 (to 3 s.f.)		4
(ii)	P(5-year-old < 62) = P $\left(Z < \frac{62 - 56}{6.5}\right)$		
	= Φ(0.923) = 0.8220	B1 for 0.8220 or 0.1780	
	P(young adult < 62) = P $\left(Z < \frac{62 - 68}{10}\right)$	B1 for 0.2743 or 0.7257	
	$= \Phi(-0.6) = 1 - 0.7257 = 0.2743$ P(One over, one under) = 0.8220 × 0.7257 + 0.1780 × 0.2743 = 0.645	M1 for either product M1 for sum of both products A1 CAO	5
(iii)		G1 for shape G1 for means, shown explicitly or by scale G1 for lower max height in young adults G1 for greater variance in young adults	4
(iv)	$Y \sim N(82,\sigma^2)$ From tables $\Phi^{-1}(0.88) = 1.175$ $\frac{62 - 82}{\sigma} = -1.175$ $-20 = -1.175 \sigma$ $\sigma = 17.0$	B1 for 1.175 seen M1 for equation in σ with z-value M1 for correct handling of LH tail A1 cao	4
			17

							www.m.	12
4767				I	Mark Sch	eme	January 20	aths aths
Ques	ation 4							scioud.co
(i)	H_0 : no ass H_1 : some a	ociation associati	between ion betwe	sex an en sex	d subject; and subje	ect;	B1 1	
	OBS	Math	English	Both	Neither	Row		
	Male	38	19	6	32	95		
	Female	42	55	9	49	155		
	Col	80	74	15	81	250		
	EXP	Maths	English	Both	Neither	Row	M1 A2 for expected values (allow A1 for at least	
	Malo	20.40	20 12	5 70	20.79	sum	correct)	
	Female	49.60	45.88	9.30	50.70	90		
	Col	80	74	15	81	250	M1 for valid attempt at	
	sum			_	-		(O-E) ² /E	
							NB These M1 A1 marks	
	CONT	Math			Dath	Naithan	cannot be implied by a	
	Male	1 90		JIISN 258	0.016		correct final value of X	
	Female	1.16	<u> </u>	313	0.010	0.030	M1 for summation	
	X ² = 7.94						B1 for 3 deg of f B1 CAO for cv	
	Refer to χ	23					B1	
	Critical val	ue at 5%	6 level = [·]	7.815			4	
	Result is s	ignifican	it	- 1 11 1 11			E1	
	I nere IS ev	viaence n betwee	to sugges	st that t Ind subje	nere IS SO	me		
	NB if H ₀ H ₁ first B1 or fi	reversed nal E1	, or 'correl	ation' m	entioned, c	do not award		
(ii)	$H_0: \mu = 67.$	$A; H_1: f$	u >67.4	score	of the non-	ulation of	B1 for both correct	
	students ta	aught wi	th the nev	w metho	od.		B1 for definition of μ	
	Test statis	tic = $\frac{68}{2}$	$\frac{3-67.4}{0.4}$	$=\frac{0.9}{2.57}$			M1	
		8. = 0.3	97√12 5	2.37			A1 cao	
	10% level	1 tailed	critical va	lue of z	z = 1.282		B1 for 1.282	
	There is in	o∠ so no sufficier	nt evidence	e to rej	ect H ₀	at the mean	M1 for comparison	
	score is in	creased	by the ne	ew teac	hing meth	od.	A1 for conclusion in words and in context 7	
							19	

Mark Scheme

			m		S
4768	Mark Sch	eme	January 2	Mymath.	Maths
	4768 \$	Statist	ics 3	50	Cloud.
Q1 (a)	$P(T > t) = \frac{k}{t^2}, t \ge 1,$				
(i)	F(t) = P(T < t) = 1 - P(T > t) $\therefore F(t) = 1 - \frac{k}{t^2}$	M1	Use of 1 – P().		
	F(1) = 0 $\therefore 1 - \frac{k}{1^2} = 0$	M1			
	∴ <i>k</i> = 1	A1	Beware: answer given.	3	
(ii)	$f(t) = \frac{d F(t)}{d t}$	M1	Attempt to differentiate c's cdf.		
	$=\frac{2}{t^3}$	A1	(For $t \ge 1$, but condone absence of this.) Ft c's cdf provided answer sensible.	2	
(iii)	$\mu = \int_1^\infty t \mathbf{f}(t) dt = \int_1^\infty \frac{2}{t^2} dt$	M1	Correct form of integral for the mean, with correct limits. Ft c's		
	$=\left[\frac{-2}{t}\right]_{t}^{\infty}$	A1	Correctly integrated. Ft c's pdf.		
	= 0 - (-2) = 2	A1	Correct use of limits leading to correct value. Ft c's pdf provided answer sensible.	3	
(b)	$H_0: m = 5.4$	B1	Both hypotheses. Hypotheses in		
	where m is the population median time for the task.	B1	"population". For adequate verbal definition.		
	Times – 5.4 Rank of diff				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	for subtracting 5.4.		
	6.0 0.6 6	M1	for ranks		
	5.2 -0.2 2	A1	FT if ranks wrong.		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ŭ		
	$W_{-} = 1 + 2 + 4 = 7$ (or $W_{+} =$ 3+5+6+7+8+9+10 = 48)	B1			
	Refer to tables of Wilcoxon single sample	M1	No ft from here if wrong.		
	(/paired) statistic for $n = 10$. Lower (or upper if 48 used) double-tailed 5% point is 8 (or 47 if 48 used)	A1	i.e. a 2-tail test. No ft from here if		
	Result is significant.	A1	ft only c's test statistic.		
	Seems that the median time is no longer as previously thought.	A1	ft only c's test statistic.	10	

			www.m	M	
4768	Mark Scher	ne	January 20	, aths	chs .
Q2	<i>X</i> ~ N(260, <i>σ</i> = 24)		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.		oud com
(i)	P (X <300) = P($Z < \frac{300 - 260}{24} = 1.6667$) = 0.9522	M1 A1 A1	For standardising. Award once, here or elsewhere.	3	
(ii)	$Y \sim N(260 \times 0.6 = 156, 24^2 \times 0.6^2 = 207.36)$ $P(Y > 175) = P(Z > \frac{175 - 156}{14.4} = 1.3194)$	B1 B1	Mean. Variance. Accept sd (= 14.4).		
	= 1 - 0.9063 = 0.0937	A1	C.a.o.	3	
(iii)	$Y_1 + Y_2 + Y_3 + Y_4 \sim N(624, 829.44)$	B1 B1	Mean. Ft mean of (ii). Variance. Accept sd (= 28.8). Ft variance of (ii).		
	$P(\text{this} < 600) = P(Z < \frac{1}{28.8}) = -0.8333)$ $= 1 - 0.7976 = 0.2024$	A1	C.a.o.	3	
(iv)	Require <i>w</i> such that	M1	Formulation of requirement.		
	$0.975 = P(above > w) = P\left(Z > \frac{w - 624}{28.8}\right)$	B1	- 1.96		
	= P(Z > -1.96) ∴ w - 624 = 28.8 × -1.96 ⇒ w = 567.5(52)	A1	Ft parameters of (iii).	3	
(v)	$On \sim N(150, \sigma = 18)$ $X_1 + X_2 + X_3 + On_1 + On_2 \sim N(1080,$ 2376) $P(this > 1000) = P(7 > \frac{1000 - 1080}{1000 - 1080} = -1.6412)$	B1 B1	Mean. Variance. Accept sd (= 48.744).		
	= 0.9496	A1	c.a.o.	3	
(vi)	Given $\bar{x} = 252.4$ $s_{n-1} = 24.6$ CI is given by $252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}}$ = 252.4 ± 6.33(6) = (246.0(63), 258.7(36))	M1 B1 A1	Correct use of 252.4 and $24.6/\sqrt{100}$. For 2.576. c.a.o. Must be expressed as an interval.	3	
				18	1

4768	Mark Schen	ne	January 20	Maths	Cloud
Q3					··COM
(i)	A <i>t</i> test should be used because	E 1			
	the population variance is unknown				
	the background population is Normal	E1		3	
(ii)	$H_0: \mu = 380$	B1	Both hypotheses. Hypotheses in		
	H ₁ : μ < 380		words only must include		
	where μ is the mean temperature in the chamber.	B1	"population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.		
	$\overline{x} = 373.825$ $s_{n-1} = 9.368$	B1	$s_n = 8.969$ but do <u>NOT</u> allow this here or in construction of test statistic, but FT from there.		
	Test statistic is $\frac{575.825 - 580}{9.368}$		Allow alternative: $380 + (c's - 1.796) \times \frac{9\cdot368}{\sqrt{12}}$ (= 375.143) for		
			subsequent comparison with \overline{x} . (Or \overline{x} – (c's –1.796) × $\frac{9\cdot368}{\sqrt{12}}$		
			(= 378.681) for comparison with 380.)		
	= -2.283(359).	A1	c.a.o. but ft from here in any case if wrong. Use of $380 - \overline{x}$ scores M1A0, but ft.		
	Refer to t_{11} . Single-tailed 5% point is -1.796 .	M1 A1	No ft from here if wrong. Must be minus 1.796 unless absolute values are being compared. No ft from here if wrong		
	Significant. Seems mean temperature in the chamber has fallen.	A1 A1	ft only c's test statistic. ft only c's test statistic.	9	
(iii)	CI is given by]
	373.825 ±	M1			
	2.201 $\times \frac{9.368}{\sqrt{12}}$	В1 M1			
	= 373.825 ± 5.952= (367.87(3), 379.77(7))	A1	c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0.	4	
			Recovery to t_{11} is OK.		-
(iv)	Advantage: greater certainty. Disadvantage: less precision.	E1 E1	Or equivalents.	2 18	

768	Mark Scher	ne	January 20 January 20
Q4			
(a) (i)	$\overline{x} = \frac{1125}{500} = 2.25$ For binomial E(X) = $n \times p$ $\therefore \hat{p} = \frac{2.25}{5} = 0.45$	B1 M1 A1	Use of mean of binomial distribution. May be implicit. Beware: answer given. 3
(ii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	125 137 137	63 16 .827 56.384 9.226 .85 56.35 9.25
	X^2 = 1.8571 + 0.4836 + 1.2404 + 1.1938 + 0.7763 + 4.9737 = 10.52(49)	M1 A1 M1 A1	Calculation of expected frequencies. All correct. Or using tables: 1.8657 + 0.4828 + 1.2396 + 1.1978 + 0.7848 + 4.9257 c.a.o. Or using tables: 10.49(64)
	Refer to χ_4^2 . Upper 5% point is 9.488. Significant. Suggests binomial model does not fit.	M1 A1 A1 A1	Allow correct df (= cells – 2) from wrongly grouped or ungrouped table, and FT. Otherwise, no FT if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.
	The model appears to overestimate in the middle and to underestimate at the tails. The biggest discrepancy is at $X = 5$.	E1 E1	Accept also any other sensible comment e.g. at 2.5% significance, the result would NOT have been significant.
	A binomial model assumes all trials are independent with a constant probability of "success". It seems unlikely that there will be independence within families and/or that p will be the same for all families.	E2	(E2, 1, 0) Any sensible comment 12 which addresses independence and constant <i>p</i> .
[b)	She should try to choose a simple random sample which would involve establishing a sampling frame and using some form of random number generator.	E1 E1 E1	Allow sensible discussion of practical limitations of choosing a random sample. Allow other sensible suggestions. E.g systematic sample - choosing every tenth family; stratified sample - by the number of cirls in a family

Mun My My Mastis January 20. Mains Cloud. Com

Mathematics 1

(i)	6 routes $M \rightarrow A \rightarrow I \rightarrow T \rightarrow Pi \rightarrow C$ $M \rightarrow A \rightarrow I \rightarrow T \rightarrow Pi \rightarrow R \rightarrow C$ $M \rightarrow A \rightarrow I \rightarrow T \rightarrow Pi \rightarrow H \rightarrow R \rightarrow C$ $M \rightarrow V \rightarrow I \rightarrow T \rightarrow Pi \rightarrow R \rightarrow C$ $M \rightarrow V \rightarrow I \rightarrow T \rightarrow Pi \rightarrow H \rightarrow R \rightarrow C$	B1 B1	
(ii)	6 routes $M \rightarrow A \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow C$ $M \rightarrow A \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow R \rightarrow C$ $M \rightarrow A \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow H \rightarrow R \rightarrow C$ $M \rightarrow V \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow R \rightarrow C$ $M \rightarrow V \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow H \rightarrow R \rightarrow C$	B1 B1	
(iii)	$ \begin{array}{c} M \rightarrow V \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow H \rightarrow R \rightarrow Pi \rightarrow C \\ \downarrow A \end{array} $	B1	
(iv)	e.g. P→T→I→V→M→A→I→Pa→P→H→R→C→P→R	M1 A2	ends at R (–1 each error/omission)

3.

```
January 20. Mainscloud.com
y = 2008
c = 2008/100 = 20
n = 2008 – 19 x (2008/19) = 2008 – 19 x (105) = 13
k = 3/25 = 0
                                                               Β1
i = 20 - 5 - 20 / 3 + 19 \times 13 + 15 = 271
                                                               Β1
i = 1
                                                               Β1
i = 1 - 0 = 1
j = 2008 + 502 + 1 + 2 - 20 + 5 = 2498
                                                               Β1
j = 6
                                                               Β1
p = - 5
m = 3
                                                               Β1
                                                               Β1
d = 23
So 23<sup>rd</sup> March
                                                               Β1
```

4.

Mark Scheme

77 [.]	1						I	Marl	k Sche		January 20
)	e.g.	0—3 4—3 8—9	3→k 7→k 9→ç	orown olue green						 M1 A1 A1	proportions OK efficient
	e.g.	0— 2— 6— 8—	1→k 5→k 7→ç 9→r	orown blue green reject						M1 A2 A1	some rejected proportions OK (–1 each error) efficient
)	e.g. Eye col	ours	bro	ow b	<u>^</u>	br	0.04/			B1 B1	br/br→br (4 times) br/gr→bl
	Parent	:1 ·2	n bro	ow b ow b		n	ow	blu	e	B1	gr/gr→gr
	Offspri	ng	n bro n	ow b n	row	n br n	ow	bro n	e w	M1 A1 A1	br/bl rule application application
	brow n	gre n	e	blue	gre n	e	brov n	w	brow n	B1	bl/bl application
	brow n	blu	ie	brow n	gre n	e	brov n	w	green	M1	gr/bl rule
	brow	blu	ie	brow	gre	e	brov	w	blue		application

Mark Scheme

								www.
4776		Mark Scheme Ja						ary 20 arths
			4776	Nu	imerical	Methods		cloud
1	x f(x)	2 0.24	3 0.03		root = (2 =	2 x 0.03 - 3 x 0.24) / (3.142857	0.03 - 0.24)	[M1A1] [A1]
	Eg:	graph shov to the left o	ving turnir or the right	ng point at x	= 3 with r	oot some way		[G2]
2	X O	f(x) 1						
	1 0.5	0.333333 0.477592	T1 = M = hence and	0.666667 0.477592 T2 = (T1 + S = (T1 + 2	· M)/2 = 2*M)/3 =	0.572129 0.540617		[M1A1] [M1A1] [M1A1] [M1A1]
								[TOTAL 8]
3	x f(x)	0 2	1 2.57	3 3.85			3 terms: form:	[M1] [M1]
	f(2) = =	2(2-1)(2-3) 3.186667	/(0-1)(0-3) (3.19)) + 2.57(2-0))(2-3)/(1-0)(1-3) + 3.85(2-0)(2-	use x=2: 1)/(3-0)(3-1)	[M1] [A1A1A1] [A1]
								[TOTAL 7]
4	x x ³ (2-x)-1	1.5 0.6875	2 -1	change o	of sign, sc	root (may be implied	d)	[M1A1]
	a 1.5 1.75 1.75	b 2 2 1.875	x 1.75 1.875 1.8125	x³(2-x)-1 0.339844 -0.17603	mpe 0.25 0.125 0.0625			[M1A1] [A1] [A1]
	4 further it	erations requ	l: mpe 0.0	325, 0.0156	825, 0.007	8125, 0.00390625		[M1A1]
								[TOTAL 8]
5	Sketch sho have subs	owing curve, tantially diffe	tangent, o rent gradi	chord, h. Ma ents.	ikes clear	that tangent and cho	ord	[G3]
	h g(2 + h) est g '(2)	0 3.61	0.1 3.849 2.39	0.01 3.633 2.3	0.001 3.612 2			[M1A1A1A1]
	Clear loss	of significant	t figures a	s h is reduc	ed –			[E1]
			.					[TOTAL 8]

4776

January 20

laths

6 (i)	$\begin{array}{cccc} x & f(x) & \Delta f & \Delta^2 f & \Delta^3 f \\ 3 & 1 & & \\ 4 & 3 & 2 & \end{array}$	^{ccloud.com}
	5 -1 -4 -6 6 -10 -9 -5 1	[M1A1A1]
	quadratic = 1 + 2(x-3) - 6(x-3)(x-4)/2 = 1 + 2x-6 - $3x^2$ +21x-36 = $-3x^2$ +23x -41	[M1A1] [A1] [A1]
	q'(x) = -6x + 23 = 0 at x = 23/6 (= 3.833)	[M1A1]
	q(x) = 0 at x = 4.847(127); also at 2.81954 - not reqd.	[M1A1]
	q(6) = -11 (or point out that the second differences not constant)	[A1] [subtotal 12]
(ii)	cubic est = $1 + 2(4.5-3) - 6(4.5-3)(4.5-4)/2 + 1(4.5-3)(4.5-4)(4.5-5)/6$ = 1.6875	[M1A1A1] [A1]
	S = 1.5/3 (1 + 4x1.6875 -10) = -1.125	[M1A1] [subtotal 6]
		[TOTAL 18]
7 (i)	mpe 0.000 000 5	[B1]
	$= 1.99 \times 10^{-7}$	[M1A1] [subtotal 3]
(ii)	mpe 1000 x 0.000 000 5 = 0.000 5 In practice the positive and negative errors will tend to cancel out	[M1A1] [E1] [subtotal 3]
(iii)	mpe 1000 x 0.000 001 = 0.001 In practice 1000 x 0.000 000 5 = 0.000 5 because average error in chopping will be 0.000 000 5	[M1A1] [M1A1] [E1] [subtotal 5]
(iv)	L to R: 1 (or 1.000 000) R to L: 1.000 001 L to R requires 8 sf, (R to L doesn't)	[B1] [B1] [E1] [subtotal 3]
(v)	Reverse order more accurate as that way allows the very small terms at the end of the series to contribute to the sum.	(E1) (E1)
	The spreadsheet is likely to work to greater accuracy The spreadsheet works to more sf than are displayed	[E1] [E1] [subtotal 4]
		[TOTAL 18]

Grade Thresholds

www.mymathscioud.com

Advanced GCE (Subject) (Aggregation Code(s)) January 2008 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	Α	В	С	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	54	46	38	31	24	0
4752	Raw	72	55	48	41	34	28	0
4753	Raw	72	57	50	43	36	28	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	77	68	59	50	41	0
4755	Raw	72	55	47	39	32	25	0
4756	Raw	72	59	51	44	37	30	0
4758	Raw	72	62	54	46	38	30	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	60	52	44	37	30	0
4762	Raw	72	61	53	45	37	30	0
4763	Raw	72	58	51	44	37	30	0
4766/	Raw	72	56	49	42	35	28	0
G241								
4767	Raw	72	62	54	46	38	31	0
4768	Raw	72	54	47	40	33	27	0
4771	Raw	72	60	53	46	39	33	0
4776	Raw	72	58	50	42	35	27	0
4776/02	Raw	18	14	12	10	8	7	0

Specification Aggregation Results

	Maximum Mark	Α	В	С	D	E	U
7895-7898	600	480	420	360	300	240	0
3895-3898	300	240	210	180	150	120	0

www.mymathscloud.com

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
7895	25.5	50.0	75.5	85.9	95.3	100	106
7896	42.9	85.7	85.7	85.7	85.7	100	7
7897							0
7898							0
3895	22.7	40.7	59.3	77.8	94.8	100	383
3896	80	80	95	95	100	100	20
3897	0	100	100	100	100	100	1
3898	56.4	76.9	87.2	97.4	97.4	100	39

556 candidates aggregated this series

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

60

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553